About
Updates
Goldbach paper [Arxiv]
Experiment Paper [Arxiv]
Primes
WebGL Quaternion primes
Wallpapers
Gauss Goldbach
Hurwitz Goldbach
Eisenstein Goldbach
Prime Sphere
Snowflake
Riemann zeta
Riemann flight
Orbifold
Chebyshev function
2D prime slices
3D Prime slices
Gaussian life
Hardy-Littlewood constant
More...
Approximating the Chebyshev function
The Chebyshev function
f(x) = ∑
p
k
≤x
log(p)
satisfies the
Riemann-Mangoldt formula
f(x) = x - ∑
w
x
2
/w - log(2π) - log(1-1/x
2
)/2
where the first sum is over the nontrivial roots of the zeta function, where log(2 pi)=zeta'(0)/zeta(0) comes from the pole and log(1-1/x
2
)/2 is the contribution from the nontrivial zeros.