
Second countability and paracompactness

(Addendum for Math 230a Fall 2014)

Recall we define an n-manifold to be any space which is paracompact, Haus-
dorff, locally homeomorphic to Rn (aka locally Euclidean), and equipped
with a smooth atlas.

Here we prove

Theorem 0.1. Assume X is a topological space which is Hausdorff,
locally Euclidean, and connected. Then the following are equivalent:

(1) X is second countable
(2) X is paracompact.
(3) X admits a compact exhaustion.

Corollary 0.2. If X is not connected, we have the following equiva-
lences:

(1) X is second countable
(2) X is paracompact, and has only countably many connected com-

ponents.
(3) X admits a compact exhaustion.

Remark 0.3. In fact, if X is not locally Euclidean nor connected,
but locally compact, then second countability implies paracompactness.
Conversely, if X admits a cover by precompact, path-connected opens, then
paracompactness implies second countability.

Being locally homeomorphic to Rn is a nice way to satisfy both these
cases.

Remark 0.4. So the class of manifolds we consider is larger than second
countable manifolds.

Remark 0.5. In fact, in the course of the proof, we will see that there
is a fourth condition that is equivalent to all others in the Corollary: (4)
X admits a cover by countably many compact sets.

5



6 SECOND COUNTABILITY AND PARACOMPACTNESS

1. Definitions

Definition 1 (Paracompact). An open cover {Vβ} is called locally
finite if for all x ∈ X, there exists U ⊂ X open with x ∈ U such that
Vβ ∩ U = ∅ for all but finitely many β.

A space X is called paracompact if every open cover {Uα} admits a
locally finite refinement.

Definition 2. A space X is called second countable if it admits a
countable base for its topology.

Definition 3. A compact exhaustion of a space X is a sequence of
compact sets {Ki}i∈Z≥0

such that X = ∪iKi, and

Ki ⊂ int(Ki+1).

In particular, after some i0, all the Ki must contain some open set.

2. Lemma

Lemma 2.1. Let X be locally Euclidean and Hausdorff. It X can be
written as a union of countably many compact subsets, then X is second
countable.

3. Proof of theorem assuming Lemma.

(2) =⇒ (1). Let {Uα} be a cover of X by all open sets that are homeo-
morphic to Rn. (Since X is connected, the n is fixed.) We let φα : Uα → Rn

be a choice of homeomorphism for each α. Let U = {φ−1(B)} be the col-
lection of preimages of open balls of finite radius. U forms another open
cover of X (in fact, a subcover of {Uα}). All elements of U have compact
closure.

Since X is paracompact, we choose a locally finite refinement V of U .
Note since V is a refinement, V is compact for each V ∈ V.

Fix V1 ∈ V. For every V ∈ V, there is some integer n such that one
can find a string of open sets V1, . . . , Vn = V for which Vi ∩ Vi+1 �= ∅.1 By
sending each V to the minimal such integer, one has a map V → Z≥1. We
now show that the fibers of this map are finite. Then we will have shown
that V is countable. Since X can be written as the union of Vi, it is second
countable (see Lemma 2.1).

Let V≤n+1 be the preimage of {1, . . . , n+1} ∈ Z. Assume by induction
that V≤n is finite, soKn := ∪V ∈V≤n

V is compact.2 By the property of being

1
For instance, for x ∈ V1 and x� ∈ V , take a path γ : [0, 1] → X from x to

x�
. By compactness of [0, 1], there is a finite collection of Vi satisfying this property.

Note one can take such a path because X is locally Euclidean—connectedness implies

path-connectedness.

2
It is a closed set contained in the finite union ∪V ∈V≤n

V .
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locally finite, for every x ∈ Kn, we have a neighborhood Ux for which only
finitely many V ∈ V intersect Ux. Taking a finite subcover of {Ux}x∈Kn , we
see that the set of all V that intersects Kn is finite. But Vn+1 is a subset of
those V intersecting Kn, so Vn+1 is finite. The base case of the induction
is n = 1, where the preimage of 1 is precisely {V1}. �

(1) =⇒ (3). For a countable base B = {Vi}, we can assume that each
Vi has compact closure.3 Since {Vi} is countable, we put an ordering on its
elements: V1, V2, . . ..

Let K1 = V1. By induction on n, let in be the smallest integer for
which

Kn ⊂ U1 ∪ . . . ∪ Uin .

Then we let

Kn+1 := U1 ∪ . . . ∪ Uin .

�

(3) =⇒ (1). Consider a compact exhaustion {Ki}. Let us take a col-
lection of open sets Wi = int(Ki). Then Wi ⊂ Ki is compact for each i,
and the Wi form an open cover of X with the property that Wi ⊂ Wi+1.

Fix an open cover {Uα}. Let x ∈ X. Then there is a smallest i for
which x ∈ Wi but x �∈ Wi−1. Then Wi −Wi−1 is compact.

If i ≥ 3, this compact set is covered by the open sets

Vα,i := Uα ∩Wi+1 ∩ (Wi−2)
C
.

We let Vi ⊂ {Vα,i} be an open subcover guaranteed by compactness.
If i = 1 or 2, we let

Vα,i := Uα ∩W3

and the collection of these open sets is an open cover for Wi. We choose a
finite subcover Vi.

We claim that
�

i≥1 Vi is a locally finite refinement. It is a refinement
because Vα,i ⊂ Uα for all α, i. It is locally finite because, for any x such
that x ∈ Wi − Wi−1, we can consider the open set U = Wi − Wi−2. By
construction, only elements of Vi+1, Vi, and Vi−1 intersect this open set,
and all these sets are finite. Finally, the collection is a cover by construction.

So in fact, we have demonstrated that any cover admits a locally finite,
countable refinment. �

3
For instance, by restricting to those Vi for which this property is satisfied. We lose

no generality since we are assuming X is locally Euclidean—and in particular, locally

compact—and Hausdorff.
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4. Proof of Lemma

Proof of Lemma 2.1. Let X =
�
Li where each Li is compact. We

know Rn is second countable.4 For each Li, choose an open cover by neigh-
borhoods homeomorphic to Rn, then take a finite subcover. Taking the
union of a countable base for each element of this subcover, we obtain a
countable base for Li. Now take the union, over all i, of the countable base
for each Li. A countable union of countable sets is again countable. �

4
For instance, by taking all balls of rational radius centered at rational points.


