1. Let \(S \) be a simplicial set. Show that \(S \) satisfies the unique lifting property for inner horns if and only if \(S \) is the nerve of a usual category \(\mathcal{C} \). Show that the assignment \(\mathcal{C} \mapsto N(\mathcal{C}) \) is a fully faithful embedding from the category of small categories (considered as a usual category, i.e., we discard natural transformations) to the category of simplicial sets.

2. Show that the assertion of Problem 1 remains valid when you replace the word "category" by "groupoid" and "inner horns" by "all horns".

3. Let \(\mathcal{C}_1, \mathcal{C}_2 \) be two categories, and \(F, G : \mathcal{C}_1 \to \mathcal{C}_2 \) be two functors. Show that the set of natural transformations \(F \Rightarrow G \) can be identified with the set of maps of simplicial sets \(\Delta^1 \times N(\mathcal{C}_1) \to N(\mathcal{C}_2) \) that restrict to \(F \) and \(G \) under \(\Delta^0 \Rightarrow \Delta^1 \).

4. Recall the simplicial category \(\mathcal{C}(\mathcal{[n]}) \).
 (a) Convince yourself that for a simplicial category \(\mathcal{C} \), maps of simplicial categories \(\mathcal{C}(\mathcal{[2]}) \to \mathcal{C} \) are the same as a triple of objects \(c_1, c_2, c_3 \in \mathcal{C} \), maps \(f_{i,j} \in \text{Hom}(c_i, c_j)_{0, i < j} \) and a homotopy \(g : f_{2,3} \circ f_{1,2} \Rightarrow f_{1,3} \in \text{Hom}(c_1, c_3)_{1} \).
 (b) Convince yourself that defining a map \(\mathcal{C}(\mathcal{[3]}) \to \mathcal{C} \) is the same as specifying objects \(c_i \in \mathcal{C}, i = 1, 2, 3, 4 \), maps \(f_{i,j} \in \text{Hom}(c_i, c_j)_{0, i < j} \), and a data of "coherent homotopy" between them (or, rather, take it as a definition of coherent homotopy and unravel what it means).

5. Recall the simplicial nerve functor \(N : \text{Cat}_\Delta \to \text{Set}_\Delta \),
 \[
 N_n(\mathcal{C}) := \text{Hom}_{\text{Cat}_\Delta}(\mathcal{C}(\mathcal{[n]}), \mathcal{C}).
 \]
 (a) What’s the precise connection between the simplicial and usual nerve constructions?
 (b) Show that the functor \(N \) above admits a left adjoint, denoted \(\mathcal{C} \). What’s the value of \(\mathcal{C} \) on \(\Delta^n \in \text{Set}_\Delta \)?
 (c) Put (b) in the following framework. Let \(\mathcal{C}_1 \) be a small category, and \(\mathcal{C}_2 \) category closed under colimits. Then colimit preserving functors \(\text{Funct}(\mathcal{C}_1^{op}, \text{Set}) \to \mathcal{C}_2 \) are in bijection with functors \(\mathcal{C}_1 \to \mathcal{C}_2 \).
 (d) Let \(A \) be a poset, considered as an ordinary category. Consider the simplicial set \(N(A) \). Describe \(\mathcal{C}(N(A)) \).

6. Let \(\mathcal{C} \) be a simplicial category such that for any \(c_1, c_2 \in \mathcal{C} \), the simplicial set \(\text{Hom}(c_1, c_2) \) is Kan. Show that \(N(\mathcal{C}) \in \text{Set}_\Delta \) is a quasi-category.

Date: October 11, 2010.