A function of two variables \(f(x, y) \) is a rule which assigns to two numbers \(x, y \) a third number \(f(x, y) \). For example, the function \(f(x, y) = x^2y + 2x \) assigns to \((3, 2)\) the number \(3^2 \cdot 2 + 6 = 24 \). The domain \(D \) of a function is set of points where \(f \) is defined, the range is \(\{ f(x, y) \mid (x, y) \in D \} \). The graph of \(f(x, y) \) is the surface \(\{(x, y, f(x, y)) \mid (x, y) \in D \} \) in space. Graphs allow to visualize functions.

1. The graph of \(f(x, y) = \sqrt{1 - (x^2 + y^2)} \) on the domain \(D = \{ x^2 + y^2 < 1 \} \) is a half sphere. The range is the interval \([0, 1]\).

The set \(f(x, y) = c = \text{const} \) is called a contour curve or level curve of \(f \). For example, for \(f(x, y) = 4x^2 + 3y^2 \), the level curves \(f = c \) are ellipses if \(c > 0 \). The collection of all contour curves \(\{ f(x, y) = c \} \) is called the contour map of \(f \).

2. For \(f(x, y) = x^2 - y^2 \), the set \(x^2 - y^2 = 0 \) is the union of the lines \(x = y \) and \(x = -y \). The curve \(x^2 - y^2 = 1 \) is made of two hyperbola with with their "noses" at the point \((-1, 0)\) and \((1, 0)\). The curve \(x^2 - y^2 = -1 \) consists of two hyperbola with their noses at \((0, 1)\) and \((0, -1)\).

3. For \(f(x, y) = (x^2 - y^2)e^{-x^2-y^2} \), we can not find explicit expressions for the contour curves \((x^2 - y^2)e^{-x^2-y^2} = c\). but we can draw the curves with the computer:

A function of three variables \(g(x, y, z) \) assigns to three variables \(x, y, z \) a real number \(g(x, y, z) \). We can visualize it by contour surfaces \(g(x, y, z) = c \), where \(c \) is constant. It is helpful to look at the traces, the intersections of the surfaces with the coordinate planes \(x = 0, y = 0 \) or \(z = 0 \).

4. For \(g(x, y, z) = z - f(x, y) \), the level surface \(g = 0 \) which is the graph \(z = f(x, y) \) of a function of two variables. For example, for \(g(x, y, z) = z - x^2 - y^2 = 0 \), we have the graph \(z = x^2 + y^2 \) of the function \(f(x, y) = x^2 + y^2 \) which is a paraboloid. Most surfaces \(g(x, y, z) = c \) are not graphs.
If \(f(x, y, z) \) is a polynomial and \(f(x, x, x) \) is quadratic in \(x \), then \(\{ f = c \} \) is a **quadric**.

\[
x^2 + y^2 + z^2 = 1
\]

Sphere

\[
x^2 + y^2 - c = z
\]

Paraboloid

\[
ax + by + cz = d
\]

Plane

\[
x^2 + y^2 - z^2 = 1
\]

One sheeted Hyperboloid

\[
x^2 + y^2 = r^2
\]

Cylinder

\[
x^2 + y^2 - z^2 = -1
\]

Two sheeted Hyperboloid

\[
x^2/a^2 + y^2/b^2 + z^2/c^2 = 1
\]

Ellipsoid

\[
x^2 - y^2 + z = 1
\]

Hyperbolic paraboloid

\[
x^2/a^2 + y^2/b^2 - z^2/c^2 = 1
\]

Elliptic hyperboloid