Math 259: Introduction to Analytic Number Theory
pseudo-syllabus

0. Introduction: What is analytic number theory?

1. Distribution of primes before complex analysis: classical techniques (Euclid, Euler); primes in arithmetic progressions via Dirichlet characters and L-series; Čebyšev’s estimates on $\pi(x)$.

2. Distribution of primes using complex analysis: $\zeta(s)$ and $L(s, \chi)$ as functions of a complex variable, and the proof of the Prime Number Theorem and its extension to Dirichlet; blurb for Čebotarev density; functional equations; the Riemann hypothesis, extensions, generalizations and consequences.

3. Selberg’s quadratic sieve and applications.

4. Analytic estimates on exponential sums (van der Corput etc.); prototypical applications: Weyl equidistribution, upper bounds on $|\zeta(s)|$ and $|L(s, \chi)|$ on vertical lines, lattice point sums.

5. Lower bounds on discriminants, conductors, etc. from functional equations; geometric analogue: how many points can a curve of genus $g \to \infty$ have over a given finite field?

6. Analytic bounds on coefficients of modular forms and functions; applications to counting representations of integers as sums of squares, etc.

Prerequisites While Math 259 will proceed at a pace appropriate for a graduate-level course, its prerequisites are perhaps surprisingly few: complex analysis at the level of Math 113, and linear algebra and basic number theory (up to say arithmetic in the field $\mathbb{Z}/p\mathbb{Z}$ and Quadratic Reciprocity). Some considerably deeper results (such as estimates on Kloosterman sums) will be cited but may be regarded as black boxes for our purposes. If you know about algebraic number fields or modular forms or curves over finite fields, you’ll get more from the course at specific points, but these points will be in the nature of scenic detours that are not required for the main journey.

Texts Lecture notes will be handed out periodically, and can also be found on the course webpage. There is no textbook: this class is an introduction to several different flavors of analytic methods in number theory, and I know of no one work that covers all this material. Thus I intend to expand and edit the lecture notes to put together a textbook, which may become available by the next time I teach the class... Supplementary readings such as Serre’s *A Course in Arithmetic* and Titchmarsh’s *The Theory of the Riemann Zeta-Function* will be suggested as we approach their respective territories.

Office Hours 335 Sci Ctr, Thursdays 3–4:30 PM (occasionally shortened by Colloquium or faculty meetings), or e-mail me at elkies@math (elkies@math.harvard.edu from outside Harvard) to ask questions or set up an alternative meeting time.

Grading There will be no required homework, though the lecture notes will contain recommended exercises. If you are taking Math 259 for a grade (i.e., are not a post-Qual math graduate student exercising your EXC option), tell me so we can work out an evaluation and grading procedure. This will most likely be either an expository final paper or an in-class presentation on some aspect of analytic number theory related to but just beyond what we cover in class. Which grading method is appropriate will be determined once the class size has stabilized after “Shopping Period”. The supplementary references will be one good source for paper or presentation topics.