Independence in abstract elementary classes

Sebastien Vasey

Carnegie Mellon University

March 25, 2015
2015 North American meeting of the ASL
University of Illinois at Urbana-Champaign
Introduction

- Forking is one of the key notions of modern stability theory.
Forking is one of the key notions of modern stability theory.

Is there such a notion outside of first-order (e.g. for logics such as $L_{\omega_1,\omega}$)?
Forking is one of the key notions of modern stability theory.

Is there such a notion outside of first-order (e.g. for logics such as $L_{\omega_1,\omega}$)?

We provide the following answer in the framework of abstract elementary classes (AECs):

Theorem

Let K be a fully tame and short AEC with a monster model. Assume K is categorical in unboundedly many cardinals. Then there exists λ such that $K\geq\lambda$ admits an independence notion with all the properties of forking in a superstable first-order theory (except it may only have extension over saturated models).
Forking is one of the key notions of modern stability theory. Is there such a notion outside of first-order (e.g. for logics such as $L_{\omega_1,\omega}$)? We provide the following answer in the framework of abstract elementary classes (AECs):

Theorem

Let K be a fully tame and short AEC with a monster model. Assume K is categorical in unboundedly many cardinals. Then there exists λ such that $K_{\geq \lambda}$ admits an independence notion with all the properties of forking in a superstable first-order theory (except it may only have extension over saturated models).
Abstract elementary classes

Definition (Shelah, 1985)

Let K be a nonempty class of structures of the same similarity type $L(K)$, and let \leq be a partial order on K. (K, \leq) is an abstract elementary class (AEC) if it satisfies:

1. K is closed under isomorphism, \leq respects isomorphisms.
2. If $M \leq N$ are in K, then $M \subseteq N$.
3. Coherence: If $M_0 \subseteq M_1 \leq M_2$ are in K and $M_0 \leq M_2$, then $M_0 \leq M_1$.
4. Downward Löwenheim-Skolem axiom: There is a cardinal $\text{LS}(K) \geq |L(K)| + \aleph_0$ such that for any $N \in K$ and $A \subseteq |N|$, there exists $M \leq N$ containing A of size $\leq \text{LS}(K) + |A|$.
5. Chain axioms: If δ is a limit ordinal, $\langle M_i : i < \delta \rangle$ is a \leq-increasing chain in K, then $M := \bigcup_{i<\delta} M_i$ is in K, and:
 5.1 $M_0 \leq M$.
 5.2 If $N \in K$ is such that $M_i \leq N$ for all $i < \delta$, then $M \leq N$.
For $\psi \in L_{\omega_1,\omega}$, Φ a countable fragment containing ψ, $K := (\text{Mod}(\psi), \prec_\Phi)$ is an AEC with $\text{LS}(K) = \aleph_0$.
Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?
Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

- This is the approach Shelah adopts in his books on classification theory for AECs.
- Many proofs have a set-theoretic flavor and rely on GCH-like principles.
Two approaches to AECs

Question (The local approach to AECs)

Make simplifying assumptions in only a few cardinals. When can we transfer them up? Can we build a structure theory cardinal by cardinal?

▶ This is the approach Shelah adopts in his books on classification theory for AECs.
▶ Many proofs have a set-theoretic flavor and rely on GCH-like principles.

Question (The global approach to AECs)

Work in ZFC, but make global model-theoretic hypotheses (like a monster model or locality conditions on types). What can we say about the AEC?
Global assumptions

Throughout the talk, we fix an AEC K. We assume we work inside a “big” model-homogeneous universal model \mathcal{C}.
Throughout the talk, we fix an AEC \mathcal{K}. We assume we work inside a “big” model-homogeneous universal model \mathcal{C}.

Fact

Such a \mathcal{C} exists if and only if \mathcal{K} has joint embedding, no maximal models, and amalgamation.
Global assumptions

Throughout the talk, we fix an AEC K. We assume we work inside a “big” model-homogeneous universal model \mathcal{C}.

Fact

Such a \mathcal{C} exists if and only if K has joint embedding, no maximal models, and amalgamation.

Definition (Galois types)

For $\bar{b} \in <\infty \mathcal{C}$, $A \subseteq |\mathcal{C}|$, let $\text{gtp}(\bar{b}/A)$ be the orbit of \bar{b} under the automorphisms of \mathcal{C} fixing A.
Tameness

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is $(< \kappa)$-tame if for any M and any distinct $p, q \in gS(M)$, there exists $A \subseteq |M|$ of size less than κ such that $p \upharpoonright A \neq q \upharpoonright A$.

Definition (Boney, 2013)

K is fully $(< \kappa)$-tame and short if for any α, any M, and any distinct $p, q \in gS_\alpha(M)$, there exists $A \subseteq |M|$ and $I \subseteq \alpha$ of size less than κ such that $p I \upharpoonright A \neq q I \upharpoonright A$.

Tameness

Let κ be an infinite cardinal.

Definition (Grossberg-VanDieren, 2006)

K is ($< \kappa$)-tame if for any M and any distinct $p, q \in gS(M)$, there exists $A \subseteq |M|$ of size less than κ such that $p \upharpoonright A \neq q \upharpoonright A$.

Definition (Boney, 2013)

K is fully ($< \kappa$)-tame and short if for any α, any M, and any distinct $p, q \in gS^\alpha(M)$, there exists $A \subseteq |M|$ and $I \subseteq \alpha$ of size less than κ such that $p^I \upharpoonright A \neq q^I \upharpoonright A$.
Fact (Makkai-Shelah, Boney)

Let $\kappa > \text{LS}(K)$ be strongly compact. Then:

1. (No need for K to have a monster model) If K is categorical in some $\lambda > \beth_{\kappa+1}(\kappa)$, then $K_{\geq \kappa}$ has a monster model.
Tame AECs and large cardinals

Fact (Makkai-Shelah, Boney)

Let $\kappa > \text{LS}(K)$ be strongly compact. Then:

1. (No need for K to have a monster model) If K is categorical in some $\lambda > \beth_{\kappa+1}(\kappa)$, then $K_{\geq \kappa}$ has a monster model.

2. K is fully ($< \kappa$)-tame and short.
Axioms of superstable forking

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation "p does not fork (dnf) over M", for $p \in gS_{<\infty}(N)$, $M \leq N$, which satisfies:
 2.1 Invariance: If $f \in \text{Aut}(C)$, p dnf over M, then $f(p)$ dnf over $f[M]$.
 2.2 Monotonicity: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS_{\alpha}(N)$ dnf over M, then $p_{I} : N' \text{dnf over } M'$.
 2.3 Existence of unique extension: If $p \in gS_{\alpha}(M)$ and $N \geq M$, there exists a unique $q \in gS_{\alpha}(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.
 2.4 Set local character: If $p \in gS_{\alpha}(M)$, there exists $M_0 \leq M$ with $\|M_0\| \leq |\alpha| + \text{LS}(K)$ such that p dnf over M_0.
 2.5 Chain local character: If $\langle M_i : i \leq \delta \rangle$ is increasing continuous, $p \in gS_{\alpha}(M_{\delta})$ and $\text{cf}(\delta) > \alpha$, then there exists $i < \delta$ such that p dnf over M_i.
Axioms of superstable forking

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
Axioms of superstable forking

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation “p does not fork (dnf) over M”, for $p \in gS^{<\infty}(N)$, $M \leq N$, which satisfies:
 - Invariance: If $f \in \text{Aut}(C)$, p dnf over M, then $f(p)$ dnf over $f[M]$.
 - Monotonicity: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^\alpha(M)$ dnf over M, then $p|_{N'}$ dnf over M'. Moreover q is algebraic if and only if p is.
 - Existence of unique extension: If $p \in gS^\alpha(M)$ and $N \geq M$, there exists a unique $q \in gS^\alpha(N)$ extending p and not forking over M.
 - Set local character: If $p \in gS^\alpha(M)$, there exists $M_0 \leq M$ with $\|M_0\| \leq |\alpha| + \text{LS}(K)$ such that p dnf over M_0.
 - Chain local character: If $\langle M_i : i \leq \delta \rangle$ is increasing continuous, $p \in gS^\alpha(M_\delta)$ and $\text{cf}(\delta) > \alpha$, then there exists $i < \delta$ such that p dnf over M_i.
Axioms of superstable forking

Definition

An AEC K with a monster model is \textit{good} if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation “p does not fork (dnf) over M”, for $p \in gS^{<\infty}(N)$, $M \leq N$, which satisfies:
 2.1 \textbf{Invariance}: If $f \in \text{Aut}(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
Axioms of superstable forking

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation "p does not fork (dnf) over M", for $p \in gS^{<\infty}(N)$, $M \leq N$, which satisfies:
 2.1 **Invariance**: If $f \in \text{Aut}(\mathfrak{C})$, $p \text{ dnf over } M$, then $f(p) \text{ dnf over } f[M]$.
 2.2 **Monotonicity**: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^\alpha(N)$ dnf over M, then $p^I \upharpoonright N'$ dnf over M'.
Axioms of superstable forking

Definition

An AEC K with a monster model is good if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation “p does not fork (dnf) over M”, for $p \in gS^{<\infty}(N)$, $M \leq N$, which satisfies:
 2.1 **Invariance**: If $f \in \text{Aut}(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
 2.2 **Monotonicity**: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p^I \upharpoonright N'$ dnf over M'.
 2.3 **Existence of unique extension**: If $p \in gS^{\alpha}(M)$ and $N \geq M$, there exists a unique $q \in gS^{\alpha}(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.
Axioms of superstable forking

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation “p does not fork (dnf) over M”, for $p \in gS^{<\infty}(N)$, $M \leq N$, which satisfies:
 2.1 **Invariance**: If $f \in \text{Aut}(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
 2.2 **Monotonicity**: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^\alpha(N)$ dnf over M, then $p^I \upharpoonright N'$ dnf over M'.
 2.3 **Existence of unique extension**: If $p \in gS^\alpha(M)$ and $N \geq M$, there exists a unique $q \in gS^\alpha(N)$ extending p and not forking over M. Moreover q is algebraic if and only if p is.
 2.4 **Set local character**: If $p \in gS^\alpha(M)$, there exists $M_0 \leq M$ with $\|M_0\| \leq |\alpha| + \text{LS}(K)$ such that p dnf over M_0.
Axioms of superstable forking

Definition

An AEC K with a monster model is *good* if:

1. K is stable in all $\lambda \geq \text{LS}(K)$.
2. There is a relation “p does not fork (dnf) over M”, for $p \in gS^{<\infty}(N)$, $M \leq N$, which satisfies:
 2.1 **Invariance**: If $f \in \text{Aut}(\mathfrak{C})$, p dnf over M, then $f(p)$ dnf over $f[M]$.
 2.2 **Monotonicity**: if $M \leq M' \leq N' \leq N$, $I \subseteq \alpha$, and $p \in gS^{\alpha}(N)$ dnf over M, then $p^{\dagger} \upharpoonright N'$ dnf over M'.
 2.3 **Existence of unique extension**: If $p \in gS^{\alpha}(M)$ and $N \geq M$, there exists a unique $q \in gS^{\alpha}(N)$ extending p and not forking over M. Moreover, q is algebraic if and only if p is.
 2.4 **Set local character**: If $p \in gS^{\alpha}(M)$, there exists $M_{0} \leq M$ with $\|M_{0}\| \leq |\alpha| + \text{LS}(K)$ such that p dnf over M_{0}.
 2.5 **Chain local character**: If $\langle M_{i} : i \leq \delta \rangle$ is increasing continuous, $p \in gS^{\alpha}(M_{\delta})$ and $\text{cf}(\delta) > \alpha$, then there exists $i < \delta$ such that p dnf over M_{i}.
For \(\alpha \) a cardinal, \(\mathcal{F} \) an interval of cardinals, we say \(K \) is \((< \alpha, \mathcal{F})\)-good if it is good when we restrict types to have length less than \(\alpha \), and models to have size in \(\mathcal{F} \).
For α a cardinal, \mathcal{F} an interval of cardinals, we say K is $(<\alpha, \mathcal{F})$-good if it is good when we restrict types to have length less than α, and models to have size in \mathcal{F}.

For example, good means $(<\infty, \geq \text{LS}(K))$-good. In Shelah’s terminology, $(\leq 1, \geq \lambda)$-good means K has a type-full good $(\geq \lambda)$-frame.
Challenges in proving goodness

- Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
Challenges in proving goodness

- Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.
- **A key question:** If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_δ does not fork over M_0?
Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.

A key question: If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_δ does not fork over M_0?

For types of length one, this follows from local character.
Challenges in proving goodness

Since we do not have much compactness, extension is usually very difficult to prove, especially across cardinals.

A key question: If $\langle p_i : i \leq \delta \rangle$ is an increasing continuous chain of types and each p_i does not fork over M_0 for $i < \delta$, do we have that p_δ does not fork over M_0?

For types of length one, this follows from local character.

But for infinite types, this is much harder.
Some previous work on independence in AECs

Fact (Shelah)

Let K be an AEC, categorical in λ, λ^+, with at least one but “few” models in λ^{++}.

If $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++}-saturated, then K is $(\leq \lambda^+, \lambda^+)$-good.

Fact (V.)

If K is $(\leq \mu)$-tame and categorical in a λ with $\text{cf}(\lambda) > \mu$, then K is $(\leq 1, \geq \lambda)$-good.

Fact (Makkai-Shelah, Boney-Grossberg)

Let $\kappa > \text{LS}(K)$ be strongly compact and let K be categorical in a $\lambda = \lambda^+ < \kappa$. Then K is $\geq \lambda$ is good.
Fact (Shelah)

Let K be an AEC, categorical in λ, λ^+, with at least one but “few” models in λ^{++}.

If $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++}-saturated, then K is $(\leq \lambda^+, \lambda^+)$-good.

Fact (V.)

If K is $(\leq \mu)$-tame and categorical in a λ with $\text{cf}(\lambda) > \mu$, then K is $(\leq 1, \geq \lambda)$-good.
Some previous work on independence in AECs

Fact (Shelah)

Let K be an AEC, categorical in λ, λ^+, with at least one but "few" models in λ^{++}.

If $2^\lambda < 2^{\lambda^+} < 2^{\lambda^{++}}$ and the weak diamond ideal on λ^+ is not λ^{++}-saturated, then K is $(\leq \lambda^+, \lambda^+)$-good.

Fact (V.)

If K is $(\leq \mu)$-tame and categorical in a λ with $\text{cf}(\lambda) > \mu$, then K is $(\leq 1, \geq \lambda)$-good.

Fact (Makkai-Shelah, Boney-Grossberg)

Let $\kappa > \text{LS}(K)$ be strongly compact and let K be categorical in a $\lambda = \lambda^{<\kappa}$. Then $K_{\geq \lambda}$ is good.
Main theorem

Theorem

Let $\kappa = \beth_\kappa > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

Corollary

If K is $(<\kappa)$-tame, $\kappa = \beth_\kappa > \text{LS}(K)$, and K is categorical in $\lambda > \kappa$, then K is stable in all cardinals.

Remark

We can replace categoricity by a natural definition of superstability, analog to $\kappa(T) = \aleph_0$.
Main theorem

Theorem

Let $\kappa = \beth_\kappa > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

1. If K is $(< \kappa)$-tame, then $K_{\geq \lambda}$ is $(\leq 1, \geq \lambda)$-good.

Corollary

If K is $(< \kappa)$-tame, $\kappa = \beth_\kappa > \text{LS}(K)$, and K is categorical in $\lambda > \kappa$, then K is stable in all cardinals.

Remark

We can replace categoricity by a natural definition of superstability, analogous to $\kappa(T) = \aleph_0$.
Main theorem

Theorem

Let $\kappa = \beth_\kappa > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

1. If K is $(< \kappa)$-tame, then $K_{\geq \lambda}$ is $(\leq 1, \geq \lambda)$-good.
2. If $\lambda > (2^\kappa)^+5$ and K is fully $(< \kappa)$-tame and short, then $K_{\geq \lambda}$ is $(\leq \lambda, \geq \lambda)$-good. Moreover it is good, except it may only have extension over saturated models.
Main theorem

Theorem

Let $\kappa = \beth_\kappa > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

1. If K is $(< \kappa)$-tame, then $K_{\geq \lambda}$ is $(\leq 1, \geq \lambda)$-good.

2. If $\lambda > (2^\kappa)^+$ and K is fully $(< \kappa)$-tame and short, then $K_{\geq \lambda}$ is $(\leq \lambda, \geq \lambda)$-good. Moreover it is good, except it may only have extension over saturated models.

Corollary

If K is $(< \kappa)$-tame, $\kappa = \beth_\kappa > \text{LS}(K)$, and K is categorical in a $\lambda > \kappa$, then K is stable in all cardinals.
Main theorem

Theorem

Let $\kappa = \beth\kappa > \text{LS}(K)$. Assume K is categorical in $\lambda > \kappa$.

1. If K is $(< \kappa)$-tame, then $K_{\geq \lambda}$ is $(\leq 1, \geq \lambda)$-good.

2. If $\lambda > (2^\kappa)^+5$ and K is fully $(< \kappa)$-tame and short, then $K_{\geq \lambda}$ is $(\leq \lambda, \geq \lambda)$-good. Moreover it is good, except it may only have extension over saturated models.

Corollary

If K is $(< \kappa)$-tame, $\kappa = \beth\kappa > \text{LS}(K)$, and K is categorical in a $\lambda > \kappa$, then K is stable in all cardinals.

Remark

We can replace categoricity by a natural definition of superstability, analog to $\kappa(T) = \aleph_0$.
Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly many cardinals, then K is categorical on a tail of cardinals.

\[1\text{Shelah claims stronger results in Chapter IV of his book.}\]
Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah, to appear in Sh:842)

If K has an ω-successful good λ-frame and weak GCH holds, then K is categorical in some $\mu > \lambda^{+\omega}$ if and only if K is categorical in all $\mu > \lambda^{+\omega}$.

\footnote{Shelah claims stronger results in Chapter IV of his book.}
Shelah’s categoricity conjecture from large cardinals?

Conjecture (Shelah)

Let K be an AEC. If K is categorical in unboundedly many cardinals, then K is categorical on a tail of cardinals.

Claim (Shelah, to appear in Sh:842)

If K has an ω-successful good λ-frame and weak GCH holds, then K is categorical in some $\mu > \lambda^{+\omega}$ if and only if K is categorical in all $\mu > \lambda^{+\omega}$.

It turns out our construction gives an ω-successful good frame. Thus modulo Shelah’s claim, we get\(^1\):

Corollary

Assume weak GCH. If there are unboundedly many strongly compact cardinals, then Shelah’s categoricity conjecture holds.

\(^1\)Shelah claims stronger results in Chapter IV of his book.
Main steps of the proof

Fix a “nice-enough” AEC K.

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.
Main steps of the proof

Fix a “nice-enough” AEC K.

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.

2. Show that coheir induces a good $(\leq 1, \lambda)$-independence relation (for suitable λ).
Main steps of the proof

Fix a “nice-enough” AEC K.

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.

2. Show that coheir induces a good $(\leq 1, \lambda)$-independence relation (for suitable λ).

3. Use further properties of coheir and results of Shelah to get that this frame is successful, and hence induces a good $(\leq \lambda, \lambda)$-independence relation.
Main steps of the proof

Fix a “nice-enough” AEC K.

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.

2. Show that coheir induces a good $(\leq 1, \lambda)$-independence relation (for suitable λ).

3. Use further properties of coheir and results of Shelah to get that this frame is successful, and hence induces a good $(\leq \lambda, \lambda)$-independence relation.

4. Use a strong continuity property proven by Shelah as well as tameness and shortness to obtain a good $(\leq \lambda, \geq \lambda)$-independence relation.
Main steps of the proof

Fix a “nice-enough” AEC K.

1. Using methods such as Galois-Morleyization and previous results of Boney-Grossberg, show that coheir has some (not all) of the properties of a good independence relation.

2. Show that coheir induces a good $(\leq 1, \lambda)$-independence relation (for suitable λ).

3. Use further properties of coheir and results of Shelah to get that this frame is successful, and hence induces a good $(\leq \lambda, \lambda)$-independence relation.

4. Use a strong continuity property proven by Shelah as well as tameness and shortness to obtain a good $(\leq \lambda, \geq \lambda)$-independence relation.

5. Use tameness and shortness to obtain a good $(< \infty, \geq \lambda)$-independence relation (we can only prove extension over saturated models).
Thank you!

- For further reference, see: Sebastien Vasey, *Independence in abstract elementary classes*.
- A preprint can be accessed from my webpage: http://svasey.org/
- For a direct link, you can take a picture of the QR code below: