THE BIRMAN EXACT SEQUENCE DOES NOT VIRTUALLY SPLIT

CHEN LEI AND NICK SALTER

Abstract. This paper answers a basic question about the Birman exact sequence in the theory of mapping class groups. We prove that the Birman exact sequence does not admit a section over any subgroup \(\Gamma \) contained in the Torelli group with finite index. \textit{A fortiori} this proves that there is no section of the Birman exact sequence for any finite-index subgroup of the full mapping class group. This theorem was announced in a 1990 preprint of G. Mess, but an error was uncovered and described in a recent paper of the first author.

1. Introduction

Let \(S \) be a Riemann surface of finite type. A fundamental tool in the study of the mapping class group \(\text{Mod}(S) \) of \(S \) is the \textit{Birman exact sequence} which describes the relationship between \(\text{Mod}(S) \) and the mapping class group \(\text{Mod}(S') \) of a surface \(S' \) obtained from \(S \) by filling in boundary components and/or punctures on \(S \). In its most basic form, \(S = \Sigma_{g,*} \) is a surface of genus \(g \geq 2 \) with a single puncture \(* \in \Sigma_g \), and \(S' = \Sigma_g \) is the closed surface obtained by filling in \(* \). In this case, the Birman exact sequence takes the form

\[
1 \to \pi_1(\Sigma_g,*) \to \text{Mod}(\Sigma_{g,*}) \to \text{Mod}(\Sigma_g) \to 1.
\]

Given any such short exact sequence of groups \(1 \to A \to B \to C \to 1 \) determined by a surjective homomorphism \(f : B \to C \), it is a basic question to determine whether the sequence \textit{splits}: that is, whether there is a (necessarily injective) homomorphism \(g : C \to B \) such that \(f \circ g = \text{id}_C \). In the context of the Birman exact sequence, this question has a topological interpretation: \([1]\) can be viewed as the short exact sequence on (orbifold) fundamental groups induced by the fibration \(\mathcal{M}_{g,*} \to \mathcal{M}_g \) of the “universal curve” \(\mathcal{M}_{g,*} \) over the moduli space of Riemann surfaces \(\mathcal{M}_g \). The question of whether \([1]\) splits is equivalent\(^{1}\) to asking whether the universal curve \(\mathcal{M}_{g,*} \) admits a continuous section: that is, whether it is possible to continuously choose a marked point on every Riemann surface of genus \(g \).

The Birman exact sequence \([1]\) does not split for any \(g \geq 2 \). This is an easy consequence of two observations. For one, it is easy to construct non-cyclic torsion subgroups of \(\text{Mod}(\Sigma_g) \), while it is also simple to show that no such subgroups exist in \(\text{Mod}(\Sigma_{g,*}) \). However, this argument is somewhat unsatisfactory in that it does not address the more fundamental issue of \textit{virtual splitting}. A short exact sequence \(1 \to A \to B \to C \to 1 \) is said to \textit{virtually split} if there exists some finite-index subgroup

\(^{1}\)For brevity’s sake, we are ignoring the complications induced by the orbifold structure; of course, these issues disappear when passing to suitably-chosen finite covers of \(\mathcal{M}_g \).
$C' \leq C$ and a homomorphism $g : C' \to B$ such that $f \circ g = \text{id}_{C'}$. The mapping class group $\text{Mod}(\Sigma_g)$ is virtually torsion-free, i.e. there exist finite-index subgroups $\Gamma \leq \text{Mod}(\Sigma_g)$ that are torsion-free. Thus for any such Γ, the argument above breaks down. Formulated in terms of moduli spaces, this leaves a very basic question unanswered: does there exist some finite-sheeted cover \tilde{M}_g of M_g, over which it is possible to find a continuous section of the (pullback of the) universal curve?

For $g = 2$ the Birman exact sequence does virtually split. This follows from the fact that every Riemann surface of genus 2 is hyperelliptic, and hence equipped with 6 necessarily distinct Weierstrass points. The monodromy of these Weierstrass points is the full symmetric group, but by passing to the 6-sheeted cover associated with the subgroup $S_5 \leq S_6$, one of these points becomes globally distinguishable and hence the universal curve virtually has a section.

The purpose of this note is to show that a similar phenomenon cannot occur for higher genus Riemann surfaces. For the definition of the Torelli group $I(\Sigma_g)$, see Section 2.2.

Theorem A. For $g \geq 4$, the Birman exact sequence does not virtually split. Moreover, for any subgroup $\Gamma \leq I(\Sigma_g)$ of finite index in the Torelli group, there is no splitting $\sigma : \Gamma \to I(\Sigma_g, \ast)$ of the Birman exact sequence restricted to Γ.

From the topological point of view, it is natural to consider the more general notion of a multisection of a fiber bundle. A multisection is a continuous choice of n distinct points on each fiber. For instance, the Weierstrass points form a multisection of cardinality 6 of the universal curve in genus 2. As in that particular example, a multisection of a fiber bundle $E \to B$ always induces a genuine section of the pullback bundle over some finite-sheeted cover $B' \to B$. We thus obtain Theorem B below as an immediate corollary of Theorem A. The Torelli space is the cover $I_g \to M_g$ of M_g corresponding to the subgroup $I_g \leq \text{Mod}_g$; the universal curve $M_{g, \ast}$ pulls back to give the universal family of “homologically framed curves” $I_{g, \ast} \to I_g$.

Theorem B. For $g \geq 4$, the universal family $I_{g, \ast} \to I_g$ does not admit any continuous multisection. A fortiori, for $g \geq 4$, the universal curve $M_{g, \ast} \to M_g$ does not admit any continuous multisection.

There is an important bibliographical comment to be made. Theorem A is claimed in the 1990 preprint [Mes90] of G. Mess. Unfortunately, as detailed in the paper [Che17] of the first author, Mess’ argument contains a fatal error. In [Che17], the first author proves Theorem A in the special case of the full Torelli group $\Gamma = I(\Sigma_g)$. The methods therein make essential use of some special relations in $I(\Sigma_g)$ which disappear upon passing to finite-index subgroups.

In the present note, we return to the outline of the argument as proposed by Mess. In brief, Mess uses the hypothesis of a splitting to construct a particular homomorphism (the homomorphism s constructed and analyzed in Section 3). Mess incorrectly assumes s to be valued in a certain subgroup of the codomain, and derives a contradiction predicated on this assumption. Our argument proceeds by studying s and deriving a contradiction as Mess does, but a more exhaustive analysis must be carried out.
The paper is organized as follows. Section 2 collects the necessary facts from the theory of mapping class groups, and establishes some preliminary results. The proof of Theorem A is then carried out in Section 3.

2. MAPPING CLASS GROUPS

2.1. Canonical reduction systems. The central tool for the proof of Theorem A is the notion of a canonical reduction system, which can be viewed as an enhancement of the Nielsen-Thurston classification. We remind the reader that a curve $c \subset S$ is said to be peripheral if c is isotopic to a boundary component or puncture of S. The Nielsen-Thurston classification asserts that each nontrivial element $f \in \text{Mod}(S)$ is of exactly one of the following types: periodic, reducible, or pseudo-Anosov. A mapping class f is periodic if $f^n = \text{id}$ for some $n \geq 1$, and is reducible if for some $n \geq 1$, there is some nonperipheral simple closed curve $c \subset S$ such that $f^n(c)$ is isotopic to c. If neither of these conditions are satisfied, f is said to be pseudo-Anosov. In this case, f is isotopic to a homeomorphism f' of a very special form. We will not need to delve into the theory of pseudo-Anosov mappings, and refer the interested reader to [FM12, Chapter 13] and [FLP12] for more details.

Definition 2.1 (Reduction systems). A reduction system of a reducible mapping class h in $\text{Mod}(S)$ is a set of disjoint nonperipheral curves that h fixes as a set up to isotopy. A reduction system is maximal if it is maximal with respect to inclusion of reduction systems for h. The canonical reduction system $\text{CRS}(h)$ is the intersection of all maximal reduction systems of h.

Canonical reduction systems allow for a refined version of the Nielsen-Thurston classification. For a reducible element f, there exists n such that f^n fixes each element in $\text{CRS}(f)$ and after cutting out $\text{CRS}(f)$, the restriction of f^n on each component is either identity or pseudo-Anosov. See [FM12] Corollary 13.3]. In Propositions 2.2–2.6 we list some properties of the canonical reduction systems that will be used later.

Proposition 2.2. $\text{CRS}(h^n) = \text{CRS}(h)$ for any n.

Proof. This is classical; see [FM12] Chapter 13].

For two curves a, b on a surface S, let $i(a, b)$ be the geometric intersection number of a and b. For two sets of curves P and Q, we say that P and Q intersect if there exist $a \in P$ and $b \in Q$ such that $i(a, b) \neq 0$. We emphasize that “intersection” here refers to the intersection of curves on S, and not the abstract set-theoretic intersection of P and Q as sets.

Proposition 2.3. Let h be a reducible mapping class in $\text{Mod}(S)$. If $\{\gamma\}$ and $\text{CRS}(h)$ intersect, then no power of h fixes γ.

Proof. Suppose that h^n fixes γ. Therefore γ belongs to a maximal reduction system M. By definition, $\text{CRS}(h) \subset M$. However γ intersects some curve in $\text{CRS}(f)$; this contradicts the fact that M is a set of disjoint curves.
Proposition 2.4. Suppose that $h, f \in \text{Mod}(S)$ and $fh = hf$. Then $\text{CRS}(h)$ and $\text{CRS}(f)$ do not intersect.

Proof. Conjugating, $\text{CRS}(hfh^{-1}) = h(\text{CRS}(f))$. Since $hfh^{-1} = f$, it follows that $\text{CRS}(f) = h(\text{CRS}(f))$. Therefore h fixes the whole set $\text{CRS}(f)$. There is some $n \geq 1$ such that h^n fixes all curves element-wise in $\text{CRS}(f)$. By Proposition 2.3, curves in $\text{CRS}(h)$ do not intersect curves in $\text{CRS}(f)$. □

For a curve a on a surface S, denote by T_a the Dehn twist about a. More generally, a Dehn multitwist is any mapping class of the form $T := \prod T_{a_i}^{k_i}$ for a collection of pairwise-disjoint simple closed curves $\{a_i\}$ and arbitrary integers k_i.

Proposition 2.5. Let

$$T := \prod T_{a_i}^{k_i}$$

be a Dehn multitwist. Then $\text{CRS}(T) = \{a_i\}$.

Proof. Firstly T cannot contain any simple closed curves b for which $i(b, a_i) \neq 0$, since no power of T preserves b. This can be seen from the equation

$$i(\prod T_{a_i}^{k_i} (b), b) = \sum |k_i|i(a_i, b) \neq 0 = i(b, b);$$

see [FM12 Proposition 3.2]. It follows that if S is any reduction system for T, then $S \cup \{a_i\}$ is also a reduction system, and hence that $\{a_i\} \subset \text{CRS}(T)$. If γ is disjoint from each element of $\{a_i\}$ but not equal to any a_i, then there exists some curve δ, also disjoint and distinct from each a_i, such that $i(\gamma, \delta) \neq 0$. As both $\{a_i\} \cup \{\gamma\}$ and $\{a_i\} \cup \{\delta\}$ are reduction systems for T, this shows that no such γ can be contained in $\text{CRS}(T)$ and hence that $\text{CRS}(T) = \{a_i\}$ as claimed. □

The final result we will require follows from the theory of canonical reduction systems. It appears as [McC82 Theorem 1].

Proposition 2.6 (McCarthy). Let S be a Riemann surface of finite type, and let $f \in \text{Mod}(S)$ be a pseudo-Anosov element. Then the centralizer subgroup of f in $\text{Mod}(S)$ is virtually cyclic.

2.2. The Torelli group, separating twists, and bounding pair maps. The action of a diffeomorphism f on the homology of a surface S is well-defined on the level of isotopy, giving rise to the symplectic representation

$$\Psi : \text{Mod}(S) \to \text{Aut}(H_1(S; \mathbb{Z})).$$

The Torelli group is the kernel subgroup $\mathcal{I}(S) := \ker(\Psi)$. There are several classes of elements of the Torelli group that will feature in the proof of Theorem □. For context, background, and proofs of the following assertions, see [FM12 Chapter 6]. A separating twist is a Dehn twist T_c, where c is a separating curve on S. Separating twists $T_c \in \mathcal{I}(S)$ are elements of the Torelli group. A pair of curves $\{a, b\} \subset S$ is said to be a bounding pair if a, b are individually nonseparating, but $a \cup b$ bounds
a subsurface of S of positive genus on both sides. A bounding pair map is the Dehn multitwist $T_a T_b^{-1}$; necessarily $T_a T_b^{-1} \in \mathcal{I}(S)$ for any bounding pair $\{a, b\}$.

2.3. Point- and disk-pushing subgroups. Recall the Birman exact sequence (1). The kernel $\pi_1(\Sigma_g, \ast)$ is referred to as the point-pushing subgroup of $\text{Mod}(\Sigma_g, \ast)$. Henceforth we will tidy our notation and omit reference to the basepoint. An element $\alpha \in \pi_1(\Sigma_g)$ determines a mapping class $\alpha \in \text{Mod}(\Sigma_g, \ast)$ as follows: one “pushes” the marked point \ast along the loop determined by α.

There is an analogous notion of a “disk-pushing subgroup”. Let $S = \Sigma_{g,1}$ denote a surface of genus g with one boundary component. In this setting, the Birman exact sequence takes the form

$$1 \to \pi_1(UT\Sigma_g) \to \text{Mod}(\Sigma_{g,1}) \to \text{Mod}(\Sigma_g) \to 1.$$ \hfill (2)

Here, $UT\Sigma_g$ denotes the unit tangent bundle of Σ_g; i.e. the S^1-subbundle of the tangent bundle $T\Sigma_g$ consisting of unit-length tangent vectors (relative to an arbitrarily-chosen Riemannian metric). In this context, the kernel $\pi_1(UT\Sigma_g)$ is known as the disk-pushing subgroup. An element $\tilde{\alpha} \in \pi_1(UT\Sigma_g)$ determines a “disk-pushing” diffeomorphism of $\Sigma_{g,1}$ as follows: one treats the boundary component Δ as the boundary of a disk D, and “pushes” D along the path determined by the image $\alpha \in \pi_1(\Sigma_g)$. The extra information of the tangent vector encoded in $\tilde{\alpha}$ is used to give a consistent framing of ∂D along its path.

The proposition below records some basic facts about point- and disk-pushing subgroups. In item 5 below, the support of a (not necessarily simple) element $\alpha \in \pi_1(\Sigma_g)$ is defined to be the minimal subsurface $S_\alpha \subset \Sigma_{g,\ast}$ that contains α for which every component of ∂S_α is essential, i.e. non-nullhomotopic and nonperipheral.

Proposition 2.7.

1. There are containments $\pi_1(\Sigma_g) \leq \mathcal{I}(\Sigma_{g,\ast})$ and $\pi_1(UT\Sigma_g) \leq \mathcal{I}(\Sigma_{g,1})$.
2. Let $\alpha \in \pi_1(\Sigma_g)$ be a simple element. Viewed as a point-push map, α has an expression as a bounding pair map

$$\alpha = T_{\alpha_L} T_{\alpha_R}^{-1},$$

where α_L, α_R are the simple closed curves on $\Sigma_{g,\ast}$ lying to the left (resp. right) of α.
3. Let $\zeta \in \pi_1(UT\Sigma_g)$ be a generator of the kernel of the map $\pi_1(UT\Sigma_g) \to \pi_1(\Sigma_g)$. Viewed as a push map, $\zeta = T_\Delta$, the twist about the boundary component of $\Sigma_{g,1}$.
4. Let $\tilde{\alpha} \in \pi_1(UT\Sigma_g)$ be simple (in the sense that $\alpha \in \pi_1(\Sigma_g)$ is simple). Viewed as a disk-pushing map, there is an expression

$$\tilde{\alpha} = T_{\alpha_L} T_{\alpha_R}^{-1} T_k$$

for some $k \in \mathbb{Z}$.
5. Let $\alpha \in \pi_1(\Sigma_g)$ be an arbitrary (not necessarily simple) element. Then

$$\text{CRS}(\alpha) = \partial(S_\alpha),$$

the (possibly empty) boundary of the support S_α. Moreover, α is pseudo-Anosov on the subsurface S_α.

Proof. Items 1-4 are standard; see [FM12, Chapters 4,6] for details. Item 5 is a reformulation of a theorem of Kra, adapted to the language of canonical reduction systems. See [FM12, Theorem 14.6]. □

In Section 3 we will make use of the following lemma concerning the action of separating twist maps on the underlying fundamental group.

Lemma 2.8. Let $T_c \in \mathcal{I}(\Sigma_{g,*})$ be a Dehn twist about a separating simple closed curve c. Let $\alpha \in \pi_1(\Sigma_g)$ be an arbitrary element, represented as a (not necessarily simple) curve based at $* \in \Sigma_{g,*}$. If

$$T_c^k(\alpha) = \alpha$$

for any $k \neq 0$, then there exists a representative of α that is disjoint from c.

Proof. The hypothesis implies that T_c^k and α commute as elements of $\mathcal{I}(\Sigma_{g,*})$. By Propositions 2.4, 2.5 and 2.7, CRS(α) $= \partial(S_\alpha)$ and CRS(T_c^k) $= \{c\}$ must be disjoint, and moreover

$$\{c\} \subset \Sigma_{g,*} \setminus S_\alpha.$$

The result follows. □

2.4. Lifts of some special mapping classes. The foundation of the proof of Theorem A is an analysis of possible images of bounding pair maps and separating twists under a hypothetical section. Let $\Gamma \leq \mathcal{I}(\Sigma_g)$ be a finite-index subgroup, and suppose that $\sigma : \Gamma \to \text{Mod}(\Sigma_{g,*})$ is a section. A first observation is that in fact, $\sigma(\Gamma) \leq \mathcal{I}(\Sigma_{g,*})$. This follows readily from the fact that $\pi_1(\Sigma_g) \leq \mathcal{I}(\Sigma_{g,*})$ as observed in Proposition 2.7.

Since Γ is a finite-index subgroup of $\mathcal{I}(\Sigma_g)$, there is no assumption that a given separating twist T_c or bounding pair map $T_aT_b^{-1}$ is an element of Γ. However, the assumption that Γ is of finite index in $\mathcal{I}(\Sigma_g)$ does imply that for each separating twist T_c and each bounding pair map $T_aT_b^{-1}$, there is some $k > 0$ (depending on the individual element) such that $T_c^k \in \Gamma$, and likewise $T_c^kT_b^{-k} \in \Gamma$.

In the following lemma and throughout, for a curve \tilde{c} on $\Sigma_{g,1}$ (resp. $\Sigma_{g,*}$), when we say \tilde{c} is isotopic to a curve c on Σ_g, we mean that \tilde{c} is isotopic to c after forgetting the puncture (resp. boundary component).

Lemma 2.9.

1) Let $\{a, b\}$ be a bounding pair, and fix $k > 0$ such that $(T_aT_b^{-1})^k \in \Gamma$. Up to a swap of a and b, we have that $\sigma((T_aT_b^{-1})^k) = (T_aT_b^{-1})^k(T_a^{-1}T_a^n)^n$, where n is an integer and $a’, a’, b’$ are three disjoint curves on $\Sigma_{g,1}$ such that $a’, a’, b’$ are isotopic to a and b is isotopic to b. Notice that n can be zero.

2) Let c be a separating curve on Σ_g that divides Σ_g into two subsurfaces each of genus at least two. For any $k > 0$ such that $(T_c)^k \in \Gamma$, we have that $\sigma((T_c)^k) = (T_c)^k(T_c^{-1}T_c^n)^n$ where n is an integer and $c’$ and $c’$ are a pair of curves on $\Sigma_{g,1}$ that are both isotopic to c.

Proof. Let $(T_aT_b^{-1})^k \in \Gamma$ be a power of a bounding pair map. Since the centralizer of $(T_aT_b^{-1})^k$ contains a copy of \mathbb{Z}^{2g-3} as a subgroup of $\mathcal{I}(\Sigma_g)$, the centralizer of $(T_aT_b^{-1})^k$ as a subgroup of Γ...
contains a copy of \(\mathbb{Z}^{2g-3} \) as well. By the injectivity of \(\sigma \), the centralizer of \(\sigma(T_aT_b^{-1}) \in I(\Sigma_{g,a}) \) contains a copy of \(\mathbb{Z}^{2g-3} \). When \(g > 3 \), we have that \(2g - 3 > 3 \). Therefore \(\sigma((T_aT_b^{-1})^k) \in I(\Sigma_{g,a}) \) cannot be pseudo-Anosov because the centralizer of a pseudo-Anosov element is a virtually cyclic group by Proposition 2.6. For any curve \(\gamma' \) on \(\Sigma_{g,a} \), denote by \(\gamma \) the same curve on \(\Sigma_g \). We decompose the proof into the following three steps.

Claim 2.10 (Step 1). \(CRS(\sigma((T_aT_b^{-1})^k)) \) only contains curves that are isotopic to \(a \) or \(b \).

Proof. Suppose that there exists \(\gamma' \in CRS(\sigma((T_aT_b^{-1})^k)) \) such that \(\gamma \) is not isotopic to \(a \) or \(b \). There are two cases.

Case 1: \(\gamma \) intersects \(a \) or \(b \). Since a power of \(\sigma((T_aT_b^{-1})^k) \) fixes \(\gamma' \), a power of \((T_aT_b^{-1})^k \) fixes \(\gamma \). On the other hand, \(CRS((T_aT_b^{-1})^k) = \{a, b\} \). Combined with Lemma 2.3, this shows that \((T_aT_b^{-1})^k \) does not fix \(\gamma \). This is a contradiction.

Case 2: \(\gamma \) does not intersect \(a \) and \(b \). In this case by the change-of-coordinates principle, there exists a separating curve \(c \) on \(\Sigma_g \) such that \(i(a, c) = 0, i(b, c) = 0 \) and \(i(c, \gamma) \neq 0 \). Assume that \(T_c^m \in \Gamma \). Since \((T_aT_b^{-1})^k \) and \(T_c^m \) commute in \(\Gamma \), the two mapping classes \(\sigma((T_aT_b^{-1})^k) \) and \(\sigma(T_c^m) \) commute in \(I(\Sigma_g) \). Therefore a power of \(\sigma(T_c^m) \) fixes \(CRS(\sigma(T_aT_b^{-1})) \); more specifically a power of \(T_c^m \) fixes \(\gamma \). However by Lemma 2.3, no power of \(T_c \) fixes \(\gamma \). This is a contradiction. \(\square \)

Claim 2.11 (Step 2). \(CRS(\sigma((T_aT_b^{-1})^k)) \) must contain curves \(a' \) and \(b' \) that are isotopic to \(a \) and \(b \), respectively.

Proof. Suppose that \(CRS(\sigma((T_aT_b^{-1})^k)) \) does not contain a curve \(a' \) isotopic to \(a \). Then by Step 1, \(CRS(\sigma((T_aT_b^{-1})^k)) \) either contains one curve \(b' \) isotopic to \(b \) or two curves \(b' \) and \(b'' \) both isotopic to \(b \). After cutting \(\Sigma_{g,a} \) along \(CRS(\phi((T_aT_b^{-1})^k)) \), there is some component \(C \) that is not a punctured annulus. \(C \) is homeomorphic to the complement of \(b \) in \(\Sigma_g \).

By the Nielsen-Thurston classification, a power of \(\sigma((T_aT_b^{-1})^k) \) is either pseudo-Anosov on \(C \) or else is the identity on \(C \). If a power of \(\sigma((T_aT_b^{-1})^k) \) is pseudo-Anosov on \(C \), then the centralizer of \(\sigma((T_aT_b^{-1})^k)|_C \) is virtually cyclic by Proposition 2.6. Combining with \(T_{b'} \) and \(T_{b''} \), the centralizer of \(\sigma((T_aT_b^{-1})^k) \) in \(I(\Sigma_g) \) is virtually an abelian group of rank at most 3. This contradicts the fact that the centralizer of \(\sigma((T_aT_b^{-1})^k) \) contains a subgroup \(\mathbb{Z}^{2g-3} \), since \(g \geq 4 \) and hence \(2g - 3 > 3 \). Therefore \(\sigma((T_aT_b^{-1})^k) \) is the identity on \(C \). However, viewing \(C = \Sigma_g \setminus \{b\} \) as a subsurface of \(\Sigma_g \) that contains \(a \), we see that \((T_aT_b^{-1})^k \) is actually not the identity on \(C \); this is a contradiction. \(\square \)

Claim 2.12 (Step 3). \(\sigma((T_aT_b^{-1})^k) = (T_aT_{b'}^{-1})^k(T_{a''}^{-1}T_{b''})^n \), where \(n \) is an integer and \(a', a'', b' \) are three disjoint curves on \(\Sigma_{g,a} \) such that \(a', a'' \) are isotopic to \(a \) and \(b' \) is isotopic to \(b \).

Proof. Suppose that \(\sigma((T_aT_b^{-1})^k) \) is pseudo-Anosov on some component \(C \) of \(\Sigma_g \setminus CRS(\sigma((T_aT_b^{-1})^k)) \).

Since the genus \(g(C) \geq 1 \), there exists a separating curve \(s \) on \(C \) such that \(\sigma(T_s) \) commutes with \(\sigma((T_aT_b^{-1})^k) \) in \(\sigma(\Gamma) \). Therefore, some power of \(\sigma((T_aT_b^{-1})^k) \) fixes \(CRS(\sigma(T_s)) \), which is either one curve or two curves isotopic to \(s \). Thus a power of \(\sigma((T_aT_b^{-1})^k) \) fixes some curve on \(C \), which means
that \(\sigma((T_aT_b^{-1})^k) \) is not pseudo-Anosov on \(C \). It follows that a power of \(\sigma((T_aT_b^{-1})^k) \) must be a product of Dehn twists about the curves in \(\text{CRS}(\sigma((T_aT_b^{-1})^k)) \). Since \(\sigma((T_aT_b^{-1})^k) \) is a lift of \((T_aT_b^{-1})^k \), the lemma holds. \(\square \)

The same argument works for \(T_c^m \in \Gamma \) the Dehn twist about a separating curve \(c \) as long as both components of \(\Sigma_g \setminus \{ c \} \) have genus two or greater. \(\square \)

2.5. The handle-pushing subgroup. As in Mess’s approach, we will prove Theorem A by showing that certain “handle-pushing” subgroups (contained in any finite-index subgroup of \(\mathcal{I}(\Sigma_g) \)) do not admit sections to \(\mathcal{I}(\Sigma_g,*) \). To define these, let \(c \) be a separating curve. The complement \(\Sigma_g \setminus \{ c \} = \Sigma_{p,1} \cup \Sigma_{q,1} \) is a disconnected surface with two components. Let \(\mathcal{I}(c) \leq \mathcal{I}(\Sigma_g) \) be the subgroup consisting of Torelli mapping classes that are a product of mapping classes with supports on either \(\Sigma_{p,1} \) or \(\Sigma_{q,1} \). The subgroup \(\mathcal{I}(c) \) satisfies the following exact sequence:

\[
1 \rightarrow \mathbb{Z} \rightarrow \mathcal{I}(\Sigma_{p,1}) \times \mathcal{I}(\Sigma_{q,1}) \rightarrow \mathcal{I}(c) \rightarrow 1,
\]

where \(\mathbb{Z} \) is generated by \(T_c \).

Definition 2.13 (Handle-pushing subgroup). Let \(c \) be a separating curve as in Figure 1 dividing \(\Sigma_g \setminus \{ c \} = \Sigma_{p,1} \cup \Sigma_{q,1} \). The handle-pushing subgroup on \(\Sigma_{p,1} \), written \(\mathcal{H}(\Sigma_{p,1}) \), is defined as

\[
\mathcal{H}(S) := \pi_1(UT \Sigma_p) \leq \mathcal{I}(c).
\]

More broadly, any finite-index subgroup of \(\mathcal{H}(\Sigma_{p,1}) \) will also be called a handle-pushing subgroup.

Remark 2.14. Every finite-index subgroup of \(\mathcal{H}(\Sigma_{p,1}) \), being isomorphic to a finite-index subgroup of \(\pi_1(UT \Sigma_p) \), is isomorphic to a non-split extension of a surface group of genus \(p' \geq p \) by \(\mathbb{Z} \).

Denote by \(A \leq \mathcal{I}(c) \) the group generated by the disk-pushing subgroup on both subsurfaces \(\Sigma_{p,1} \) and \(\Sigma_{q,1} \). Then \(A \) satisfies the following exact sequence:

\[
1 \rightarrow \mathbb{Z} \rightarrow \pi_1(UT \Sigma_p) \times \pi_1(UT \Sigma_q) \rightarrow A \rightarrow 1
\]

Lemma 2.15. The exact sequence (3) does not virtually split.
Proof. This will be proved via group cohomology. For a \(\mathbb{Z} \)-central extension of a group \(T \)
\[
1 \rightarrow \mathbb{Z} \rightarrow \widetilde{T} \xrightarrow{\alpha} T \rightarrow 1,
\]
there is an associated Euler class \(Eu(\alpha) \in H^2(T; \mathbb{Z}) \). The extension \(\alpha \) splits if and only if \(Eu(\alpha) \) vanishes; see [Bro94, Chapter 4.3]. \(Eu(\alpha) \) can be constructed using the Lyndon-Hochschild-Serre spectral sequence of \([4, \text{Chapter } 4.3]\), by taking \(Eu(\alpha) = d_2(1) \). Here \(d_2 \) is the differential \(d_2 : \mathbb{Z} \rightarrow H^2(T; \mathbb{Z}) \) on the \(E_2 \) page. The (rational) Betti number \(b_1(\widetilde{T}) \) can be computed from the spectral sequence as
\[
b_1(\widetilde{T}) = b_1(T) + \dim(\ker(d_2)).
\]
Therefore \(Eu(\alpha) \neq 0 \) is nonvanishing if and only if \(b_1(\widetilde{T}) = b_1(T) \).

Let \(A' \xrightarrow{i} A \) be a finite-index subgroup of \(A \). Let \(\overline{A'} = p^{-1}(A') \). The goal is to prove that the top row of the diagram
\[
\begin{array}{c}
1 \\ \downarrow \\ 1
\end{array}
\quad
\begin{array}{cccccc}
1 & \longrightarrow & \mathbb{Z} & \longrightarrow & \overline{A'} & \longrightarrow & A' & \longrightarrow & 1 \\
\downarrow & & \downarrow \beta & & \downarrow \alpha & & \downarrow \\
1 & \longrightarrow & \mathbb{Z} & \longrightarrow & \overline{A} & \longrightarrow & A & \longrightarrow & 1
\end{array}
\]
does not split. It suffices to show that \(Eu(\beta) \neq 0 \in H^2(A'; \mathbb{Q}) \). By the theory of the transfer homomorphism,
\[
i^*: H^2(A; \mathbb{Q}) \rightarrow H^2(A'; \mathbb{Q})
\]
is injective. By construction, \(Eu(\beta) = i^*(Eu(\alpha)) \). Therefore it suffices to establish that
\[
Eu(\alpha) \neq 0 \in H^2(A; \mathbb{Q}).
\]
By the above discussion, we only need to show that \(b_1(A) = b_1(\pi_1(UT\Sigma_p) \times \pi_1(UT\Sigma_q)) \). However, since \(p \geq 2 \) and \(q \geq 2 \) by assumption,
\[
b_1(\pi_1(UT\Sigma_p) \times \pi_1(UT\Sigma_q)) = b_1(\pi_1(\Sigma_p) \times \pi_1(\Sigma_q)).
\]
Since \(A \rightarrow \pi_1(\Sigma_p) \times \pi_1(\Sigma_q) \) is surjective, it follows that \(b_1(A) \geq b_1(\pi_1(\Sigma_p) \times \pi_1(\Sigma_q)) \), and so \(b_1(A) = b_1(\pi_1(UT\Sigma_p) \times \pi_1(UT\Sigma_q)) \) as desired. \(\square \)

As a corollary, we can refine the analysis of \(\sigma(T^k_c) \) for \(T_c \) a separating twist, as begun in Lemma 2.15.

Lemma 2.16. Let \(c \subset \Sigma_g \) be a separating curve such that each component of \(\Sigma_g \setminus \{c\} \) has genus at least 2, and let \(k > 0 \) be such that \(T^k_c \in \Gamma \). Then there exists a curve \(\overline{c} \subset \Sigma_g \) isotopic to \(c \) such that \(\sigma(T^k_c) = T^k_{\overline{c}} \).

Proof. If this is not the case, then \(\sigma(T^k_c) = T^l_c T^m_{\overline{c}} \) where \(c', c'' \) bound an annulus and \(l \neq 0, m \neq 0 \). Let \(A \) be the subgroup constructed above, relative to the separating curve \(c \). The image \(\sigma(A \cap \Gamma) \) must be contained in the centralizer of \(T^l_c T^m_{\overline{c}} \). In particular, \(\sigma(A \cap \Gamma) \) must be contained in the disk-pushing subgroups on the sides of \(c' \) and \(c'' \) not bounding the annulus. This gives a virtual splitting of exact sequence \([3]\), contradicting Lemma 2.15. \(\square \)
3. Proof of Theorem A

Beginning the proof. Let $\Gamma \leq I(\Sigma_g)$ be a subgroup of finite index, and suppose that $\sigma : \Gamma \to I(\Sigma_g,*)$ is a section. By the hypothesis that $g \geq 4$, there exists a separating simple closed curve $c \subset \Sigma_g$ that divides Σ_g into subsurfaces $\Sigma_{p,1}$ and $\Sigma_{q,1}$ with $p, q \geq 2$. Let T_c denote the corresponding Dehn twist. Choosing k such that $T_c^k \in \Gamma$, Lemma 2.16 asserts that $\sigma(T_c^k) = T_{\tilde{c}}$ for some separating curve $\tilde{c} \subset \Sigma_g,*$. Without loss of generality, we assume that the marked point $* \in \Sigma_{p,1}$.

A standard argument using canonical reduction systems shows that $\sigma(\text{Mod}(\Sigma_{p,1} \cap \Gamma))$ is supported on the subsurface $\tilde{\Sigma}_{p,1} \sim \Sigma_{p,1},*$ bounded by \tilde{c}. The Birman exact sequences for $\Sigma_{p,1}$ and $\Sigma_{p,1,*}$ (restricted to the Torelli group) fit together in the following commutative diagram, where the group $\text{PB}_{1,1}(\Sigma_p)$ and the homomorphism $p_* \pi$ will be described below.

\[
\begin{array}{ccccccccc}
1 & \longrightarrow & \text{PB}_{1,1}(\Sigma_p) & \longrightarrow & I(\Sigma_{p,1,*}) & \longrightarrow & I(\Sigma_p) & \longrightarrow & 1 \\
& & \downarrow p_* & \downarrow \pi & \downarrow \sigma & \downarrow & \downarrow & \downarrow & \\
1 & \longrightarrow & \pi_1(UT\Sigma_p) & \longrightarrow & I(\Sigma_{p,1}) & \longrightarrow & I(\Sigma_p) & \longrightarrow & 1
\end{array}
\]

The group $\text{PB}_{1,1}(\Sigma_p)$ is defined as the fundamental group of the configuration space $P\text{Conf}_{1,1}(\Sigma_p)$, where

\[
P\text{Conf}_{1,1}(\Sigma_p) := \{(x, v) \mid x \in \Sigma_p, v \in T_y^1(\Sigma_p), x \neq y\}.
\]

Here, $T_y^1(\Sigma_p)$ denotes the space of unit-length tangent vectors in the tangent space $T_y(\Sigma_p)$, relative to an arbitrarily-chosen Riemannian metric. Projection onto either factor realizes $P\text{Conf}_{1,1}(\Sigma_p)$ as a fibration in two ways:

\[
\begin{array}{cccc}
\Sigma_{p,*} & \longrightarrow & UT(\Sigma_{p,*}) & \longrightarrow & \text{PConf}_{1,1}(\Sigma_p) & \longrightarrow & \Sigma_p \\
& & \downarrow p_1 & \downarrow & \downarrow p_* & \downarrow & \downarrow & \downarrow &
\end{array}
\]

3.1. The map s. We now come to the central object of study in the argument. Let $H = H(\Sigma_{p,1}) \cap \Gamma$ denote the handle-pushing subgroup. Combining diagrams (6) and (7), we obtain a homomorphism $\tilde{s} := p_{1,*} \circ \sigma : H \to \pi_1(\Sigma_p)$.

We will see that \tilde{s} has paradoxical properties, leading to a contradiction that establishes the non-existence of the section σ. A first observation is that we can replace \tilde{s} by a map between surface groups. Let $\varpi : \pi_1(UT\Sigma_p) \to \pi_1(\Sigma_p)$ denote the projection, and define $\overline{H} := \varpi(H)$. By construction \overline{H} is a finite-index subgroup of $\pi_1(\Sigma_p)$.

\[\text{The Torelli group is not unambiguously defined for a surface } \Sigma_{p,1,*}. \text{ The meaning here of } I(\Sigma_{p,1,*}) \text{ is simply the full preimage } \pi^{-1}(I(\Sigma_{p,1})).\]
Lemma 3.1. There is a homomorphism
\[s : \mathcal{H} \to \pi_1(\Sigma_p) \] (9)
such that \(s \) factors as \(s = \sigma \circ \varpi \).

Proof. As noted in Remark 2.14, \(\mathcal{H} \) has the structure of a cyclic central extension of a finite-index subgroup \(\overline{\mathcal{H}} \leq \pi_1(\Sigma_p) \). Viewed as a subgroup of \(I(\Sigma_{p,1}) \), the center of \(\mathcal{H} \) consists of elements of the form \(T^k_b \). As already observed, \(\sigma(T^k_b) = T^k_b \), where \(c \) is the boundary of the subsurface \(\Sigma_{p,1,*} \leq \Sigma_{g,*} \).

The map \(p_{1,*} : \mathrm{PB}_{1,1}(\Sigma_p) \to \pi_1(\Sigma_p) \) is induced from the boundary-capping map \(\Sigma_{p,1,*} \to \Sigma_{p,*} \). The result follows. \(\Box \)

The construction of \(s \) allows us to continue the analysis of \(\sigma \) begun in Lemma 2.9, giving a complete description of \(\sigma \) on (powers of) bounding-pair maps.

Lemma 3.2. Let \(a, b \) form a bounding pair on \(\Sigma_g \). Then there exists a bounding pair \(\overline{a}, \overline{b} \) on \(\Sigma_{g,*} \) such that \(\sigma(T^k_bT^{-k}_b) = T^k_aT^{-k}_a \) for any \(k \) such that \(T^k_bT^{-k}_b \in \Gamma \).

Proof. Let \(c \) be a separating curve on \(\Sigma_g \) dividing \(\Sigma_g \) into components \(\Sigma_{p,1}, \Sigma_{q,1} \), each of genus \(p,q \geq 2 \). Let \(a, b \) be a bounding pair on \(\Sigma_g \) such that \(c \) forms a pair of pants; observe that for any bounding pair \(a, b \), there exists a curve \(c \) as above. For instance, in Figure 1, the curves \(\{ \gamma_L, \gamma_R \} \) form such a bounding pair relative to the \(c \) as shown. As \(T^k_bT^{-k}_b \) commutes with \(T^f_c \), the same is true for the lifts \(\sigma(T^k_bT^{-k}_b) \) and \(\sigma(T^f_c) = T^f_c \). In particular, \(\sigma(T^k_bT^{-k}_b) \) is supported on exactly one component of the surface \(\Sigma_{g,*} \setminus \{ \gamma \} \). There are thus two possibilities to consider, depending on whether this component also contains \(* \).

According to Lemma 2.9, there are simple closed curves \(\overline{a}, \overline{a}' \subset \Sigma_{g,*} \) and an integer \(m \) such that
\[\sigma(T^k_bT^{-k}_b) = T^k_aT^{-k}_a \]
(10)
The curves \(\overline{a} \) and \(\overline{a}' \) are isotopic on \(\Sigma_g \), but may not be isotopic on \(\Sigma_{g,*} \), i.e. \(\overline{a} \cup \overline{a}' \) can bound an annulus \(A \) containing the marked point \(* \). If this is not the case, then \(\overline{a}, \overline{a}' \) determine the same isotopy class on \(\Sigma_{g,*} \), and the result follows. Note that in the case where \(A \) and \(* \) are contained in distinct components of \(\Sigma_{g,*} \setminus \{ \gamma \} \), this must necessarily hold.

We therefore assume that \(A \) and \(* \) are contained in the same component \(\Sigma_{p,1,*} \subset \Sigma_{g,*} \). Since \(a, b, c \) form a pair of pants on \(\Sigma_g \), it follows that \(T^k_aT^{-k}_a \in \mathcal{H} \), the handle-pushing subgroup. In fact, there is a one-to-one correspondence between elements of \(\overline{\mathcal{H}} \) represented by (a power of) a simple closed curve on \(\Sigma_{p} \), and the set of bounding pairs \(a, b \) under consideration. We write \(\alpha(a,b) \in \pi_1(\Sigma_p) \) for the element of \(\overline{\mathcal{H}} \) corresponding to the bounding pair \(T^k_aT^{-k}_a \). Our proof now proceeds by analyzing \(s \) on such elements of \(\overline{\mathcal{H}} \).

As observed above, \(* \) may or may not be contained in the annulus \(A \). If \(* \) is not, we can reformulate the above argument by observing that \(s(\alpha(a,b))^k = 1 \). In the remaining case, we aim to show that either \(m = 0 \) or \(m = k \) in (10). As (without loss of generality) \(\overline{a}' \) becomes isotopic to \(\overline{b} \) upon capping \(c \) by a disk, it follows that
\[s(\alpha(a,b))^k = p_{1,*}(T^k_aT^{-k}_a) = T^k_aT^{-k}_a = \alpha(a,b)^{m-k}. \] (11)
To summarize, we have shown that for all bounding pairs \(a, b \) under consideration, there is an integer \(m(a, b, k) \) such that
\[
s(\alpha(a, b)^k) = \alpha(a, b)^{m(a, b, k)}.
\]
The desired assertion \(m = 0 \) or \(m = k \) now follows from Lemma 3.3 below.

Lemma 3.3. Let \(G \leq \pi_1(\Sigma_p) \) be a subgroup of finite index, and let \(f : G \to \pi_1(\Sigma_p) \) be an arbitrary homomorphism. Suppose that for all simple elements \(\alpha \in \pi_1(\Sigma_p) \), there is an integer \(m(\alpha, k) \) such that
\[
f(\alpha^k) = \alpha^{m(\alpha, k)}.
\]
Then either \(m(\alpha, k) = 0 \) or else \(m(\alpha, k) = k \), independent of \(\alpha \).

Proof. Suppose \(\alpha, \beta \) are simple elements. Then for any \(\ell \), the conjugate \(\beta^\ell \alpha \beta^{-\ell} \) is also simple. Choose \(k, \ell \) such that \(\alpha^k \) and \(\beta^\ell \) are both elements of \(G \). Then definitionally,
\[
f(\beta^\ell \alpha^k \beta^{-\ell}) = (\beta^\ell \alpha \beta^{-\ell})^{m(\beta^\ell \alpha \beta^{-\ell}, k)}.
\]
On the other hand, it is clear that \(m(\beta, -\ell) = -m(\beta, \ell) \), and so
\[
f(\beta^\ell \alpha^k \beta^{-\ell}) = f(\beta^\ell) f(\alpha^k) f(\beta^{-\ell}) = \beta^{m(\beta, \ell)} \alpha^{m(\alpha, k)} \beta^{-m(\beta, \ell)}.
\]
For an arbitrary nontrivial element \(\gamma \in \pi_1(\Sigma_p) \) and integers \(m, n \), the elements \(\gamma^m \) and \(\gamma^n \) are conjugate if and only if \(m = n \). It follows that \(m(\alpha, k) = m(\beta^\ell \alpha \beta^{-\ell}, k) \). Thus,
\[
(\beta^\ell \alpha \beta^{-\ell})^{m(\alpha, k)} = \beta^{m(\beta, \ell)} \alpha^{m(\alpha, k)} \beta^{-m(\beta, \ell)},
\]
and so
\[
\beta^{\ell-m(\beta, \ell)} \alpha^{m(\alpha, k)} \beta^{m(\beta, \ell)} = \alpha^{m(\alpha, k)}.
\]
Nontrivial elements \(x, y \in \pi_1(\Sigma_p) \) commute if and only if there are nonzero integers \(c, d \) such that \(x^c = y^d \). As \(\alpha, \beta \) were assumed to be simple, we conclude that one of three conditions must hold: (1) \(\alpha = \beta^{\pm 1} \), or (2) \(\ell = m(\beta, \ell) \) or else (3) \(m(\alpha, k) = 0 \).

Case (1) provides no further information; we henceforth assume that \(\alpha \neq \beta^{\pm 1} \). To finish the argument, we must show that if \(m(\alpha, k) = 0 \), then \(m(\beta, \ell) = 0 \) for all \(\beta, \ell \). Suppose to the contrary that there is some \(\beta \) such that \(m(\beta, \ell) \neq 0 \). Reversing the roles of \(\alpha \) and \(\beta \) in the above argument, we see that (2) must hold and so \(k = m(\alpha, k) \), but this contradicts the assumption \(m(\alpha, k) = 0 \).

Translated into the setting of the homomorphism \(s : \mathcal{H} \to \pi_1(\Sigma_p) \), Lemmas 3.2 and 3.3 combine to give the following immediate but crucial corollary.

Corollary 3.4. The homomorphism \(s : \mathcal{H} \to \pi_1(\Sigma_p) \) has one of the following properties:

(A) \(s(\alpha^k) = \alpha^k \) for all elements \(\alpha^k \in \mathcal{H} \) such that \(\alpha \in \pi_1(\Sigma_p) \) is simple.

(B) \(s(\alpha^k) = 1 \) for all elements \(\alpha^k \in \mathcal{H} \) such that \(\alpha \in \pi_1(\Sigma_p) \) is simple.

The next step of the argument considers cases (A) and (B) separately. In both cases, we will see that the formula defining \(s \) on simple elements extends to all of \(\mathcal{H} \).
3.2. Case (A).

Lemma 3.5. Suppose s has property (A) of Corollary 3.4. Then $s : H \to \pi_1(\Sigma_p)$ is given by the inclusion map.

Proof. This follows easily from the method of proof of Lemma 3.3. Let $\beta \in H$ be an arbitrary element, let $\alpha \in \pi_1(\Sigma_p)$ be simple, and let $\alpha^k \in H$. Then $\beta\alpha\beta^{-1}$ is also simple, and $\beta\alpha^k\beta^{-1} \in H$. As $\beta\alpha\beta^{-1}$ is simple,

$$f(\beta\alpha^k\beta^{-1}) = \beta\alpha^k\beta^{-1};$$
onumber

on the other hand,

$$f(\beta\alpha^k\beta^{-1}) = f(\beta)\alpha^k f(\beta)^{-1}.$$

Arguing as in Lemma 3.3, this implies $f(\beta) = \beta$ as desired. \qed

3.3. Case (B).

Lemma 3.6. Suppose s has property (B) of Corollary 3.4. Then $s : H \to \pi_1(\Sigma_p)$ is the trivial homomorphism.

The proof of Lemma 3.6 will require a further analysis of s. This will require some preliminary work to describe. By passing to a further finite-index subgroup $\Gamma' \leq \Gamma$ if necessary, we can assume that $H \leq \pi_1(UT\Sigma_p)$ is characteristic and hence the conjugation action of $I(\Sigma_p,1)$ on $\pi_1(UT\Sigma_p)$ preserves H. This descends to an action of $I(\Sigma_p,*)$ on H. Thus there is a homomorphism

$$\lambda : I(\Sigma_p,*) \to \text{Aut}(H).$$

Consider now the images $\Gamma \leq I(\Sigma_p,*)$ and $\Gamma \leq I(\Sigma_p)$. By construction, $\Gamma \cap \pi_1(\Sigma_p) = H$. As conjugation by H is an inner automorphism, λ descends to a homomorphism

$$\lambda : \Gamma \to \text{Out}(H).$$

Lemma 3.7. The homomorphism s is Γ-equivariant. That is, for any outer automorphism $[\alpha] \in \Gamma$ and any $x \in H$, the conjugacy classes of $s(\alpha \cdot x)$ and $\alpha \cdot s(x)$ in $\pi_1(\Sigma_g)$ coincide.

Proof. Let $a \in \Gamma$ be given. Choose an element $\alpha \in \Gamma$ descending to the outer automorphism class a. By construction, for $x \in H$, the image $s(x)$ is given by $(p_{1,*} \circ \sigma)(\tilde{x})$, where $\tilde{x} \in H$ is any lift. On H, the action of Γ is induced by the conjugation action $\tilde{x} \mapsto \alpha\tilde{x}\alpha^{-1}$. Thus

$$s(a \cdot x) = p_{1,*}(\sigma(\alpha\tilde{x}\alpha^{-1})) = p_{1,*}(\sigma(\alpha)) s(x) p_{1,*}(\sigma(\alpha))^{-1}.$$

Here we exploit the fact that $p_{1,*} : \text{PB}_{1,1}(\Sigma_p) \to \pi_1(\Sigma_p)$ is the restriction of the forgetful homomorphism

$$p_{1,*} : I(\Sigma_{p,1,*}) \to I(\Sigma_{p,*}).$$

To finish the argument, it suffices to show that $[p_{1,*}((\sigma(\alpha)))] = a$ as elements of $I(\Sigma_p)$. This follows from the fact that $\sigma : \Gamma \to I(\Sigma_{p,1,*})$ is a section of the map $p_{2,*} : I(\Sigma_{p,1,*}) \to I(\Sigma_{p,1})$ in combination
with the commutativity of the diagram

$$I(\Sigma_{p,1}) \xrightarrow{p_1 \cdot *} I(\Sigma_{p,1}) \xrightarrow{p_2 \cdot *} I(\Sigma_{p,1}) \xrightarrow{} I(\Sigma_p).$$

Proof. (of Lemma 3.6) Let \(x \in \overline{\mathcal{H}} \) be an arbitrary element, and let \(d \) be an arbitrary separating curve on \(\Sigma_{p,1} \). Taking \(k \) such that \(T_d^k \in \Gamma \) and applying Lemma 3.7, there is an equality

$$s(T_d^k(x)) = T_d^k(s(x))$$

of conjugacy classes in \(\pi_1(\Sigma_p) \). To proceed, we will analyze the conjugacy class of \(T_d^k(x) \) in \(\overline{\mathcal{H}} \). This is complicated by the fact that in this expression, \(T_d^k \) acts on \(x \) not as a separating twist on \(\Sigma_p \), but rather as the lift of such a twist to the finite-sheeted cover \(\Sigma_r \to \Sigma_p \) corresponding to the finite-index subgroup \(\overline{\mathcal{H}} \).

Lemma 3.8. Let \(T_d \) be a Dehn twist on \(\Sigma_{p,1} \), and let \(x \in \overline{\mathcal{H}} \) be an arbitrary element. Then there exists some \(k \geq 1 \), simple elements \(\gamma_1, \ldots, \gamma_N \) of \(\pi_1(\Sigma_p) \) and integers \(f_1, \ldots, f_N \), such that \(\gamma_i^{f_i} \in \overline{\mathcal{H}} \) for all \(i \), and there is an expression

$$T_d^k(x) = \gamma_1^{f_1} \cdots \gamma_N^{f_N} x$$

of elements of \(\overline{\mathcal{H}} \).

Proof. Let \(\pi : \Sigma_r \to \Sigma_p \) be the covering map associated to the containment \(\overline{\mathcal{H}} \leq \pi_1(\Sigma_p) \). For \(k \) sufficiently large, \(T_d^k \) lifts to a mapping class on \(\Sigma_r \). This lift is not unique, but there is a unique lift up to the action of the deck group of \(\pi \). Since \(T_d \) is a Dehn twist on \(\Sigma_p \), there is a distinguished lift

$$\widetilde{T}_d^k = \prod T_{d_i}^{k_i}$$

of \(T_d^k \) as a multitwist on \(\Sigma_r \), for certain integers \(k_i \). Here, the set \(\{ \widetilde{d}_i \} \) consists of all components of the preimage \(\pi^{-1}(d) \). Observe that each curve \(\widetilde{d}_i \) is contained in the \(\pi_1(\Sigma_p) \)-conjugacy class of \(d^{e_i} \) for some \(e_i \), and that also the conjugacy class of \(d^{e_i} \) is contained in \(\overline{\mathcal{H}} \). As the deck group is finite, we can assume that \(T_d^k \) acts on \(\overline{\mathcal{H}} \) as a genuine multitwist, possibly after further increasing \(k \).

Choose representative curves for each \(\widetilde{d}_i \), and represent \(x \in \overline{\mathcal{H}} \) as a map \(x(t) : [0,1] \to \Sigma_r \), chosen so as to intersect the set \(\{ d_i \} \) in minimal position. This determines a sequence of arcs \(\alpha_1, \ldots, \alpha_{N+1} \) as follows. The points of intersection between \(x \) and \(\{ d_i \} \) can be enumerated via \(0 < t_1 < \cdots < t_N < t_{N+1} = 1 \) such that \(x(t) \) intersects the multicurve \(\{ d_i \} \) if and only if \(t = t_m \) for some \(1 \leq m \leq N \). The arc \(\alpha_m \) is then defined as the image of \(x \) restricted to the interval \([0,t_m] \) (so in particular, \(\alpha_{N+1} = x \)).

Each arc \(\alpha_m \) connects \(* \) to one of the curves \(\widetilde{d}_i \), and thus determines an element \(\gamma_m' \) of \(\overline{\mathcal{H}} \) in the conjugacy class of the appropriate \(\widetilde{d}_i \). The geometric description of \(T_d^k \) as a multitwist allows one to obtain an expression for \(T_d^k(x) \) of the desired form. The curve \(T_d^k(x) \) can be described as follows: first \(T_d^k(x) \) follows \(\alpha_1 \) to the first point of intersection with \(\{ d_i \} \); this is the curve corresponding to \(\gamma_1'. \)
Then $T_d^k(x)$ winds around γ'_1 a number of times f'_1 as specified by (14). Then $T_d^k(x)$ continues along the portion of α_2 running from $t = t_1$ to $t = t_2$, and continues, winding around each γ'_i some number of times f'_i in succession.

By construction, after each crossing of γ'_m, the curve $T_d^k(x)$ traverses the portion of α_{m+1} from $t_m = t_1$ to t_{m+1}. This can be replaced by first backtracking along α_m, and then traversing the entirety of α_{m+1}. Written as an element of $\pi_1(\Sigma_r) = \mathcal{H}$, this analysis produces an expression

$$T_d^k(x) = \gamma'_1f'_1 \cdots \gamma'_Nf'_N x.$$

The claim now follows from the observation that each γ'_m is a based loop on Σ_r corresponding to a curve \tilde{d}_i. Each \tilde{d}_i is a component of the preimage of d. As an element of $\pi_1(\Sigma_p)$, each γ'_m is thus of the form $\gamma'_m = \gamma^e_m$ for some simple curve $\gamma_m \in \pi_1(\Sigma_p)$ in the conjugacy class of d. Taking $f_m = e_m f'_m$, the result follows. □

Applying Lemma 3.8, there is an equality

$$s(T_c^k(x)) = s(\gamma_1f_1 \cdots \gamma_Nf_N x) = s(\gamma_1f_1) \cdots s(\gamma_Nf_N)s(x) = s(x),$$

(15)

with the last equality holding by Corollary 3.4(B) since all the γ_i are simple. We conclude that there is an equality of $\pi_1(\Sigma_g)$-conjugacy classes

$$T_c^k(s(x)) = s(x).$$

By Lemma 2.8 this implies that $s(x)$ is disjoint from c as curves on Σ_p. As this argument applies for every separating curve on Σ_p, we conclude that $s(x)$ must be disjoint from every separating curve c on Σ_p. Since $p \geq 2$, an easy argument with the change-of-coordinates principle implies that any nontrivial element $y \in \pi_1(\Sigma_p)$ must intersect some separating curve c. This shows that $s(x)$ must be trivial as claimed. □

3.4. **Finishing the argument.** The final stage of the argument exploits the fact that the existence of a section $\sigma : \mathcal{H} \to \text{PB}_1(\Sigma_p)$ places strong homological constraints on the map s. Throughout this section, our cohomology groups will implicitly have rational coefficients. To simplify matters further, we forget the (inessential) tangential data encoded in the space $\text{PConf}_{1,1}(\Sigma_p)$, and consider instead the induced section

$$\sigma : \mathcal{H} \to \text{PB}_2(\Sigma_p);$$

here $\text{PB}_2(\Sigma_p) = \pi_1(\text{PConf}_2(\Sigma_p))$ is the fundamental group of the configuration space of two ordered points on Σ_p. The space $\text{PConf}_2(\Sigma_p)$ is, by definition, given as

$$\text{PConf}_2(\Sigma_p) := \Sigma_p \times \Sigma_p \setminus \Delta,$$

where Δ is the diagonal locus. In this setting, there is a factorization

$$s = p_{2,*} \circ \sigma.$$
A crucial consequence of this is that \(s^* : H^*(\Sigma_p) \to H^*(\overline{H}) \) factors through \(H^*(\text{PB}_2(\Sigma_p)) \). The following lemma is proved by a standard argument using the formulation of Poincaré duality via Thom spaces.

Lemma 3.9. Let \([\Delta] \in H^2(\Sigma_p \times \Sigma_p) \) denote the Poincaré dual class of \(\Delta \), and let
\[
i : \text{PConf}_2(\Sigma_p) \to \Sigma_p \times \Sigma_p
\]
de note the inclusion map. Then \(i^*([\Delta]) = 0 \in H^2(\text{PConf}_2(\Sigma_p)) \).

Concluding the proof. Let \(i : \overline{H} \to \pi_1(\Sigma_p) \) denote the inclusion. Consider the product homomorphism
\[
i \times s : \overline{H} \to \pi_1(\Sigma_p) \times \pi_1(\Sigma_p) \cong \pi_1(\Sigma_p \times \Sigma_p).
\]
Observe that this coincides with the section map \(\sigma : \overline{H} \to \text{PB}_2(\Sigma_p) \), so that there is a factorization
\[
i \times s = i \circ \sigma.
\]
By Lemma 3.9 it follows that \((i \times s)^*([\Delta]) = (i \circ \sigma)^*([\Delta]) = 0 \in H^2(\overline{H}) \).

Let \(x_1, y_1, \ldots, x_p, y_p \in H^1(\Sigma_p) \) denote a symplectic basis with respect to the cup product form; let also \([\Sigma_p] \) denote the fundamental class. Then
\[
[\Delta] = 1 \otimes [\Sigma_p] + [\Sigma_p] \otimes 1 + \sum_{i=1}^p x_i \otimes y_i - y_i \otimes x_i
\]
as a class in
\[
H^2(\Sigma_p \times \Sigma_p) \cong (H^0(\Sigma_p) \otimes H^2(\Sigma_p)) \oplus (H^2(\Sigma_p) \otimes H^0(\Sigma_p)) \oplus (H^1(\Sigma_p) \otimes H^1(\Sigma_p)).
\]
Thus
\[
0 = (i \times s)^*([\Delta]) = i^*(1)s^*([\Sigma_p]) + i^*([\Sigma_p])s^*(1) + \sum_{j=1}^p i^*(x_j)s^*(y_j) - i^*(y_j)s^*(x_j).
\]
We will see that in both cases (A) and (B), this is a contradiction. Lemma 3.5 asserts that in Case (A), \(s^* = i^* \) in degree 1. Since \(H^*(\Sigma_p) \) is generated as an algebra in degree 1, this implies that \(s^* = i^* \) in degree 2 as well. Then a basic calculation shows that in this case,
\[
(i \times s)^*([\Sigma_p]) = (i \times i)^*([\Sigma_p]) = \chi(\Sigma_p)[\overline{H}],
\]
where \(\chi(\Sigma_p) \) denotes the Euler characteristic and \([\overline{H}] \) denotes the fundamental class of the surface group \(\overline{H} \). As this is nonzero, we have arrived at a contradiction. Similarly, Lemma 3.6 asserts that in Case (B), \(s^* = 0 \) in positive degrees. Then \((i \times s)^*([\Sigma_p]) = i^*([\Sigma_p]) = \chi(\Sigma_p)[\overline{H}] \neq 0 \), again a contradiction. □
THE BIRMAN EXACT SEQUENCE DOES NOT VIRTUALLY SPLIT

REFERENCES

