Math 170 Final Formula Sheet

Probability

Formula 1

Suppose we have an Events A such that

- The Probability that Event A has Outcome X_1 is P_1
- The Probability that Event A has Outcome X_2 is P_2
- The Probability that (Event A has Outcome X₁) AND (Event A has Outcome X₂) is P₃

then

• The Probability that (Event A_1 has Outcome X_1) OR (Event A_2 has Outcome X_2) = $P_1 + P_2 - P_3$

Independent Events

Suppose we have two Events B_1, B_2

- Probability that Event B_1 has Outcome Y_1 is Q_1
- Probability that Event B_2 has Outcome Y_2 is Q_2

If Event B_1 and Event B_2 are independent (i.e. the out come of Event B_1 does not effect the outcome of Event B_2) then

• The Probability that (Event B_1 has Outcome Y_1) AND (Event B_2 has Outcome Y_2) = $Q_1 \times Q_2$.

Dynamical Systems

- Let $P_{n+1} = f(P_n)$ be a discrete dynamical system. Then the equilibrium of the system occur at values of P such that P = f(P).
- An equilibrium P is
 - Stable from the left if and only if for all small enough ϵ , when $P_0 = P - \epsilon$ then $\lim_{n \to \infty} P_n = P$
 - Stable from the right if and only if for all small enough ϵ , when $P_0 = P + \epsilon$ then $\lim_{n \to \infty} P_n = P$

Complex Numbers and Polynomials

- Let f(x) be a polynomial in x with real coefficients. Then f(x) = f(x).
 So, if f(x) = 0 then f(x) = 0
- If f(x) = ax² + bx + c where a, b, c are real numbers then f(x) = 0 if and only if

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- If f(x) is a polynomial of degree n then f factors into n linear factors over the complex numbers.
- If a, b are real numbers then

$$-\overline{a+bi} = a-bi$$

$$-\operatorname{Norm}(a+bi) = \sqrt{a^2 + b^2}$$

Pascal's Triangle and Binomial Formula

• Recall that the first 3 rows of Pascal's triangle are

With the first 1 being the 0th element.

• The *m*th element of the *n*th row is $\begin{pmatrix} n \\ m \end{pmatrix}$

•
$$\binom{n}{m} = \frac{n!}{m!(n-m)!}$$

• $\binom{n}{m} = \binom{n-1}{m-1} + \binom{n-1}{m}$ if $n \ge m$
• $(X+Y)^n = \sum_{i=0}^n \binom{n}{i} X^i Y^{n-i}$

Euler's Formula and ϕ

• Let p_1, p_2, \ldots, p_m be the prime factors of n. Then

$$\phi(n) = n \times \frac{p_1 - 1}{p_1} \times \frac{p_1 - 1}{p_1} \times \dots \times \frac{p_m - 1}{p_m}$$

- There are $\phi(n)$ many numbers which have multiplicative inverses mod n and are less than n.
- There are $\phi(n)$ many numbers which are relatively prime to n and are less than n.

- <u>Euler's Formula</u> If gcd(a, n) = 1 then $a^{\phi(n)} = 1 \mod n$.
- If gcd(a, n) = 1 and gcd(x, φ(n)) = 1 then there is a number m such that (a^m)^x = a mod n. This m is such that mx = 1 mod φ(n) (i.e such that there is a t with mx = tφ(n) + 1)

Miscellaneous

A	B	C	D	E	F	G	H	Ι	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	0	P	0	R	S	T	\overline{U}	V	W	X	V	\overline{Z}
11	0	1	Ŷ	10	D	1	U	v		11	1	2
14	15	16	17	18	19	20	21	22	23	24	25	26

- If f(x) is a function, then μf(x) = n is the least natural number (i.e. {0,1,...}) such that f(n) = 0.
- Let X be a shape. Let X_n be the shape X scaled by a linear factor of 1/n (i.e. if X is a square with a side of length 1, then X₂ is a square with a side of length 1/2). If we can reconstruct X using m copies of X_n then the dimension of X is the number d such that

$$n^d = m$$

In other words the dimension of X is $\ln(m)/\ln(n) = \log_{10}(m)/\log_{10}(n)$.