
ON TRANSFERRING MODEL THEORETIC THEOREMS OF

L∞,ω IN THE CATEGORY OF SETS TO A FIXED

GROTHENDIECK TOPOS

NATHANAEL LEEDOM ACKERMAN

Abstract. Working in a fixed Grothendieck topos Sh(C,JC) we general-
ize L∞,ω to allow our languages and formulas to make explicit reference to

Sh(C,JC). We likewise generalize the notion of model. We then show how to

encode these generalized structures by models of a related sentence of L∞,ω

in the category of sets and functions. Using this encoding we prove analogs

of several results concerning L∞,ω , such as the downward Löwenheim-Skolem

theorem, the completeness theorem and Barwise compactness.

1. Introduction

A remarkable fact about Lω1,ω(L) is that several important theorems which are
true of first order model theory have analogs for the model theory of countable
fragments of Lω1,ω(L). Examples of such theorems include (what we call) the
directed embedding theorem, i.e. if all maps in a directed system preserves a
fragment of formulas then so do the maps in the limit, the downward Löwenheim-
Skolem theorem, the completeness theorem and Barwise’s compactness theorem.

One of the most significant discoveries of categorical logic is that the operations
of L∞,ω(L) can be described categorically. This observation allows us to study
models of sentences of L∞,ω(L) in categories other than the category of sets and
functions. One class of categories which are especially well suited to interpret
sentences of L∞,ω(L) are Grothendieck toposes. However, while it make sense to
study the model theory of L∞,ω(L) in a Grothendieck topos, this model theory can
behave very differently than model theory in the category of sets and functions. For
example, in general it will be intuitionistic and need not satisfy the law of excluded
middle.

A natural question to ask is: “If we fix a Grothendieck topos, which results about
the model theory of Lω1,ω(L) in the category of sets and functions have analogs for
the model theory of Lω1,ω(L) in our fixed Grothendieck topos?” In this paper we
provide a partial answer to this question by proving analogs of each of the theorems
mentioned so far. Further, as we are fixing the Grothendieck topos in which we
are working, we will be able to prove our theorems for a wider class of formulas
and sentences than just Lω1,ω(L). Specifically we will be able to prove our analogs
for formulas and sentences which makes explicit use of our chosen Grothendieck
topos in their definitions. We call the more general formulas “sheaf formulas”, the
more general sentences “sheaf sentences” and we call the resulting structures “sheaf
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models”. As we will see in Section 2.3 our concept of a sheaf formula will not only
subsume the notion of a formula of L∞,ω(L), but will also subsume Kripke-Joyal
semantics (for models in a Grothendieck topos).

Our collection of sheaf formulas will generalize L∞,ω(L) in two ways. First, as
we have fixed the category our models will live it, our sheaf languages will be able
to make explicit reference to objects in this category. For example, our language
will be allowed to have generalized constants, i.e. constants which are interpreted
by generalized elements in any L-structure.

The second way in which sheaf formulas will be more general than formulas of
L∞,ω(L) has to do with connectives. We can then think of the subobject classifier,
Ω, of our fixed Grothendieck topos as a sheaf of truth values. An interpretation of
a sheaf formula (in an L structure) will then take one of two forms. Either it will
be a map between (the interpretation of) two sorts or it will be a map from (the
interpretation of) a sort to Ω. We will then be allowed to build new sheaf formulas
of the later type from a finite number of other sheaf formulas of the later type using
a connective, i.e. a map from Ωn to Ω. This is done in a similar manner to how
in continuous logic (see [5]) we consider [0,1] as a metric space of truth values and
connectives are maps between [0,1]n and [0,1].

We will prove the analogs of the previously mentioned theorems of Lω1,ω(L) by
first constructing an encoding of sheaf L-structures by models in Set of a theory in
L∞,ω(L) (where L is constructed from L). We will then define an interpretation
of sheaf formulas and sheaf sentences by sentences of L∞,ω(L) in such a way that
a sheaf model satisfies a sheaf sentence if and only if the corresponding encoded
L-structure satisfies the corresponding encoded sentence of L∞,ω(L). With this
encoding in hand we will proceed to show how various theorems about L∞,ω(L)
can be translated into theorems about sheaf L-structures, sheaf formulas and sheaf
sentences.

One of the main difficulties which we will have to over come in order to define
our encodings is the non-first order nature of sheaves. We will avoid this difficulty
by working in a category, Sh∗(C,JC), which is an absolute version of the category
of sheaves on the (weak) site (C,JC). As we will see, the class of objects and the
class of morphisms in Sh∗(C,JC) can be defined by sentences of L∞,ω(L). There is
however one subtlety in dealing with Sh∗(C,JC) that is worth mentioning. While
the morphisms can be described by a sentence of L∞,ω(L), that sentence will need
to have access to a linear order of order type ∣JC ∣+. For some of our results this
poses a problem as on its face it will prohibit us from directly using results which
hold for Lω1,ω(L) but not for Lω2,ω(L) (in the category of sets). As such it will be
important to keep track of the order type of this linear ordering and showing that
in many cases it suffices for this linear ordering to be countable.

1.1. Outline. We begin this paper in Section 2.1 with a review of the relationship
between weak sites and sites as well as a review of the definition of Sh∗(C,JC).
In particular we show how sites can be constructed form weak sites and how this
construction can be mirrored in the construction of the sheafification of a sepa-
rated presheaf by iterating a particular functor associated to a weak site. We also
introduce the important notion of the closure of a subpresheaf in another presheaf.
In Section 2.2 we then introduce the notions of sheaf languages and sheaf models
before, in Section 2.3, introducing the notions of sheaf formulas and sheaf sentences.
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In Section 3 we give our encodings. These encodings will be constructed by
means of what we call components. A component consists of a language and a
Π2-theory in that language. In Section 3.1 we give the basic components, i.e.
those from which the other components will be built. In Section 3.2 we then,
using the basic components, define components which encode the elements of sheaf
languages and sheaf models. Finally, in Section 3.3 we define the components
which capture the notion of when a formula is equivalent to a function/relation
in our sheaf language and the components which allow us to build arbitrary sheaf
sentences from simpler ones. With these in hand we prove the desired relationship
between encoded formulas, sentences and encoded models.

Once we have finished defining our encodings we will prove, in Section 4, our main
results. In Section 4.1 we will show that sheaf formulas and sheaf sentences are pre-
served under directed limits, in Section 4.2 we will prove a downward Löwenheim-
Skolem theorem, in Secion 4.3 we will prove a completeness theorem and in Section
4.4 we will prove an analog of Barwise’s compactness theorem.

We then end in Section 5 with a list of open questions.

1.2. Background. In this paper we will use Zermelo-Fraenkel Set Theory with the
Axiom of Choice (ZFC) as our ambient theory and we will assume all results take
place in a fixed model of ZFC which we refer to as Set. We also abuse notation and
use Set for the category of sets and functions in this ambient model of ZFC as well.
By an admissible set relative to a language ⟨∈,⋯⟩ we mean a transitive set V such
that (V, ∈, . . . ) is a model of Kripke-Platek set theory (KP) relative to a ⟨∈, . . .⟩. If
ϕ is in the language of set theory and V is an admissible set then by ϕV we mean
the formula where all quantifiers in ϕ are bound by V . When V0, V1 ⊧ KP, we will
also use V0 ≺n V1 to signify that V0 is an Σn elementary substructure of V1. If X is
a set we denote its transitive closure by tc(X).

If C is a category we will denote its collection of objects by obj(C), its collection
of morphisms by mor(C), the collection of morphisms from c to d by C[c, d] and the
collection of morphisms with codomain d by C[−, d]. We will assume all categories
have distinguished finite limits. For c ∈ obj(C), !c ∶ c → 1 will be the unique map
from c to the terminal object. All categories will be locally small.

If C is a small category we let Presh(C) be the category of presheaves on C. If
A is a presheaf on C we let x ∈ A be shorthand for the statement x ∈ ⋃c∈obj(C)A(c)
and we let dom(x) ∈ obj(C) be such that x ∈ A(dom(x)). We will also assume for
every presheaf A that if c, d ∈ obj(C) with c ≠ d then A(c) ∩ A(d) = ∅. We loose
no generality by this assumption, but it will simplify the presentation. If A,B are
presheaves we let A ⊆ B mean the obvious thing and if f ∶ A → B is a map of
presheaves we let ran(f) = {y ∈ B ∶ (∃x ∈ A)f(x) = y}. We let ∣A∣ ∶= ∣⋃c∈C A(c)∣

If (C,JC) is a site let Sep(C,JC) be the category of separated presheaves on
(C,JC) and Sheaf(C,JC) be the category of sheaves on (C,JC). We let i ∶ Sheaf(C,JC) →
Sep(C,JC) be the inclusion map and a ∶ Sheaf(C,JC) → Sep(C,JC) be the sheafi-
fication functor. Whenever A,B ∈ obj(Sep(C,JC)) with A ⊆ B, we will assume
a(A) ⊆ a(B). While we may not be able to do this simultaneously for all objects of
Sep(C,JC), for any set of separated presheaves we can choose a specific sheafifica-
tion which makes this true. As such there is no loss of generality in this assumption,
and we make it as it will greatly simplify the presentation.

By a first order language we mean a language with sorts, relations on the
sorts, and functions between the sorts which are intended to be interpreted in Set.
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We will assume the collection of sorts of a first order language is closed under
taking finite strings (where ⟨S1, . . . , Sn⟩ will be interpreted as the product of the
interpretations of S1, . . . , Sn). If L0 ⊆ L1 are first order languages and M is an L1

structure, M∣L0 is the structure obtained from M by restricting to the language
L0.

If T ∈ L∞,ω(L) is a sentence then we let ⊢ T denote the statement that there
exists an (infinitary) proof of T . We define the complexity of a formula ϕ ∈
L∞,ω(L) as the least κ such that ϕ ∈ Lκ+,ω(L).

Suppose L is a first order language with S ∈ L a sort and E ∈ L a relation of
type S. Further suppose ϕ,ψ ∈ L∞,ω(L) with ψ(⋅) a formula with a free variable
of type S and which doesn’t have E(⋅) as a subformula. We then we denote the
result of replacing all occurrences E(⋅) in ϕ by ψ(⋅) by ϕ[ψ(⋅)/E(⋅)]. Similarly if
L0,L1 are copies of the same language and L0 ⊆ L∗, then we denote the language
obtained by replacing L0 by L1 in L∗ by L∗[L1/L0].

For more information on background definitions or results not mentioned here
the reader is referred to such standard texts as [4] of [7] for set theory, [9] for
category theory, [10] for the theory of sheaves, and [6] or [8] for model theory.

2. Sheaf Models

In this section we will introduce our notion of a sheaf language, a sheaf model, a
sheaf formula and a sheaf sentence. These are the analogs of first order languages,
models in Set, and formulas and sentences in L∞,ω(L), except that they will take
into account the fact that we are working in a fixed background Grothendieck topos.

2.1. Grothendieck Toposes. Before we begin it is worth recalling some defini-
tions which will be important later.

Definition 2.1. A weak site is a pair (C,JC) where C is a small category and
JC is a function which takes an object c of C and returns a collection of sieves on
c such that:

● (Identity) C[−, c] ∈ JC(c).
● (Base Change) If I ∈ JC(c) and f ∶ d→ c then f∗I ∶= {g ∶ f ○ g ∈ I} ∈ JC(d).

We call JC(c) the covering sieves of c and we let ∣JC ∣ = ∣⋃c∈obj(C) JC(c)∣ be the
size of JC .

For the rest of the paper we will work with a fixed weak site (C,JC).

Definition 2.2. A site is a weak site (C,JC) satisfying

● (Local Character) Whenever I ∈ JC(c) and K is any sieve on c, if we have
(∀d ∈ obj(C))(∀f ∈ I(d)) f∗K ∈ JC(d) then K ∈ JC(c).

The relationship between a weak site and a site is similar to the relationship
between a basis for a topological space and a topological space. Being a basis
for a topological space is an absolute property while being a topological space is
not absolute. Similarly, being a weak site is an absolute property while being a
site is not absolute. Further, just as for each basis there is a smallest topological
space which contains it, for each weak site (C,JC) there is a smallest site which
contains it. The smallest site containing (C,JC) can be built as the fixed point of
an inductive definition.
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Definition 2.3. If (C,JC) is a weak site then for each c ∈ obj(C) we define the
collection of sieves JαC(c) by induction on α:

● J1
C(c) = {I ∶ (∃I ′ ∈ JC(c))I ′ ⊆ I}.

● Jω⋅γC (c) = ⋃β<ω⋅γ JβC(c).

● Jα+1
C (c) = {I ∶ (∃I ′ ∈ JC(c))(∀f ∈ I ′)f∗I ∈ JαC(dom(f))}.

As JαC is non-decreasing in α, there is some ordinal such that JαC = Jα+1
C . We let

JORD
C be such a JαC .

It is easily checked that (C,JORD
C ) is the smallest site containing (C,JC) (see

[2] for details). If I ∈ JORD
C (c) then we define the level of I to be the least α such

that I ∈ JαC(c). This fine grained analysis of the construction of the smallest site
containing a weak site is important as it will allow us to give a fine grained analysis
of the sheafification functor.

Definition 2.4. Let F ∶ Cop → Set be a presheaf on C. If c ∈ obj(C) and I ∈ JC(c),
a compatible collection of elements (for I) is a collection ⟨(bi, i) ∶ i ∈ I⟩ such
that

● For each d ∈ obj(C), (∀i ∈ I(d)) bi ∈ F (d).
● For each d, d′ ∈ obj(C), (∀i ∈ I(d))(∀i′ ∈ C[d′, d])bi○i′ = F (i′)(bi)

If there is an b ∈ F (d) such that F (i)(b) = bi for all i ∈ I then we say ⟨(bi, i) ∶ i ∈ I⟩
covers b.

Definition 2.5. Let F ∶ Cop → Set be a presheaf. We say F is separated for
(C,JC) if every compatible collection of elements of F covers at most one element
of F . We say F is a sheaf for (C,JC) if every compatible collection of elements
covers exactly one element of F . We let Sep(C,JC) be the full subcategory of
Presh(C) whose objects are separated presheaves for (C,JC) and Sheaf(C,JC) be
the full subcategory of Presh(C) whose objects are sheaves for (C,JC).

It is not hard to show (see [2]) that Sep(C,JC) = Sep(C,JORD
C ) and that

Sheaf(C,JC) = Sheaf(C,JORD
C ). We have chosen to deal with weak sites instead

of sites as there are weak sites which are of size κ but for which the minimal site
containing them, in any model of set theory, is of size 2κ. This distinction between
sites and weak sites will be important when we want to define the notion of the size
of a structure.

If we start with a separated presheaf F for (C,JC) we can build its sheafification
a(F ) in stages that mirror the way in which (C,JORD

C ) was built from (C,JC).

Definition 2.6. We define the functors aα ∶ Sep(C,JC) → Sep(C,JC) by induction
on α as follows:

● a0 = id.
● a1(A) = {b ∈ a(A) ∶ (∃I ∈ JC(dom(b)))(∀f ∈ I) a(A)(f)(b) ∈ A(dom(f))}.
● aω⋅γ(A) = ⋃β<ω⋅γ aβ(A).

● aα+1(A) = a1(aα(A)).

For a map f ∶ A → B we let aα(f) ∶ aα(A) → aα(B) be the unique map of
presheaves such that (∀x ∈ A)f(x) = aα(f)(x).

For any separated presheaf A we have aα(A) ⊆ aβ(A) whenever α < β. Further,
if aα(A) = aα+1(A) then aα(A) = a(A), although the first α for which this will
happen depends on A.
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The presheaves aα(A) can be thought of as building a(A) by adding, one layer
at a time, all compatible collections of elements for all I ∈ JC(c), c ∈ obj(C). In
particular it is easy to check that b ∈ aα(A)(c) if and only if {g ∶ a(A)(g)(b) ∈ A} ∈
JαC(c).

One of the difficulties with working with categories of sheaves is that the property
of being a sheaf is a second order property (and in particular is not absolute). Our
first step towards dealing with this issue is to define a stand in for sheafification of
subobjects.

Definition 2.7. Suppose A ⊆ B are separated presheaves for (C,JC). We define
the closure of A in B to be a(A)∩B. We say that A is closed in B if a(A)∩B = A.
A particularly important case will be where a(A)∩B = B in which case we say that
A covers B.

The intuition is that a subpresheaf A is closed in B if whenever a compatible
collection of elements of A covers an element in B that element is already in A.
Note that a(A) ∩B captures this notion because by our convention, if A ⊆ B then
a(A) ⊆ a(B). The following is also immediate.

Lemma 2.8. If A ⊆ B then A is closed in B if and only if for all c ∈ obj(C), all
I ∈ JC(c) and all b ∈ B(c), [⋀f∈I B(f)(b) ∈ A(c)] → b ∈ A(c). i.e. if and only if

a1(A) ∩B = a0(A) ∩B = A.

We define the level of A in B to be the smallest α such that aα(A)∩B = aα+1∩B.
The level of a subpresheaf A in B can be thought the number of times we need to
iteratively add in elements of B which come from compatible collections of elements
of A before we stabilize. We can think of closure of A in B as a stand in for the
sheafification of A which doesn’t require us to add compatible collections of elements
which we don’t already have in front of us (and hence the closure of A in B isn’t
second order).

Lemma 2.9. Suppose B′ ⊆ B and A′ = A∩B′. Then [aα(A)∩B]∩B′ = aα(A′)∩B′.

Proof. This is because [aα(A) ∩B] ∩B′ = aα(A) ∩B′ = aα(A∩B′) ∩B′ = aα(A′) ∩
B′. �

This tells us that taking the closure of a subpresheaf A in B is a local property.
We now give two results which show that, in some sense, the level of A in B can’t
be too large.

Proposition 2.10. Suppose V is an admissible set (with respect to some language)
with (C,JC) ∈ V and suppose A,B ∈ obj(Sep(C,JC))V with A ⊆ B. Then

(1) For every α ∈ ORD(V ), aα(A) ∩B ∈ V .
(2) The function FV which takes an α ∈ ORD(V ) and returns aα(A) ∩B ∈ V

is uniformly ∆1-definable over V .
(3) aORD(V )(A) ∩B = a(A) ∩B.

Proof. (1) follows immediately from (2) and the fact that V is admissible. To see
that (2) holds define the function function G(x,Y ) as follows. If either x /∈ ORD(V )
or Y is not a function with domain x then G(x,Y ) ∶= ∅. Otherwise, if x = ∅,
G(x,Y ) ∶= A, if x is a limit ordinal then G(x,Y ) ∶= ⋃z∈x Y (z) and if x = α + 1 then

G(x,Y ) ∶= {b ∈ ⋃
c∈obj(C)

B(c) ∶ (∃I ∈ JC(c))(∀f ∈ I) B(f)(b) ∈ Y (α)}.
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It is then easily checked that G is ∆1 definable over V and that FV is obtained
from G using transfinite recursion. Hence as V is admissible FV is ∆1 over V .

To show (3) holds it suffices to show that for all x ∈ aORD(V )+1(A) ∩ B that

x ∈ aORD(V )(A) ∩ B, or equivalently that there is an α(x) ∈ ORD(V ) such that

x ∈ aα(x)(A) ∩B.

Let z ∈ aORD(V )+1(A) ∩ B. We then have there is some I ∈ JC(dom(z)) such

that for all g ∈ I, B(g)(z) ∈ aORD(V )(A) ∩ B. Then, as aORD(V )(A) ∩ B =
⋃α∈ORD(V ) aα(A) ∩B the following holds:

(V, ∈) ⊧ ⋁
I∈JC(c)

⋀
g∈I

(∃α) B(g)(x) ∈ aα(A)(X) ∩B.

This is a Σ1-formula and hence, as V satisfies Σ1 reflection, there is a V ∗ ∈ V
with (C,JC) ∈ V ∗ such that

(V ∗, ∈) ⊧ ⋁
I∈JC(c)

⋀
g∈I

(∃α) B(g)(x) ∈ aα(A)(X) ∩B.

But then there is an I ∈ JC(X) such that ⋀g∈I(∃β < ORD(V ∗))B(g)(x) ∈
aβ(A) ∩ B. Hence if α(x) = ORD(V ∗) + 1 we have z ∈ aα(x)(A) ∩ B with α(x) ∈
ORD(V ).

�

Proposition 2.11. Suppose V is an admissible set (with respect to some language)
and V ⊧“There is a Σ1-definable well-ordering”. Further suppose (C,JC) ∈ V and
V ⊧ ∣κ∣ > ∣JC ∣. If A,B ∈ obj(Sep(C,JC)) ∩ V then aκ(A) ∩B = a(A) ∩B.

Proof. Let x ∈ a(A) ∩B and let V0 ≺1 V with V0 ∈ V a Σ1-elementary substructure
such that {x,A,B, tc({C,JC})} ∈ V0 and V ⊧ ∣V0∣ = ∣JC ∣. Note that we can find
such a substructure as V has a Σ1-definable well-ordering. Now let i ∶ V0 → V ∗

0 be
the transitive collapsing map. Then {i, V ∗

0 } ∈ V .
We have by Proposition 2.10 that there is some α ∈ ORD(V ) such that x ∈

aα(A)∩B. Hence there must be some α∗ ∈ ORD(V ∗
0 ) such that i(x) ∈ aα

∗(i(A))∩
i(B). But we also have that the inverse of the transitive collapse gives injections
iA ∶ i(A) → A and iB ∶ i(B) → B. Let A′ be the image of i(A) under iA and let B′

be the image of i(B) under iB . We then have x ∈ aα
∗(A′) ∩B′. By Lemma 2.9 we

also have aα
∗(A′) ∩B′ = [aα∗(A) ∩B] ∩B′ and so x ∈ aα

∗(A) ∩B.
But by construction we have α∗ ∈ V ∗

0 and V ⊧ ∣V ∗
0 ∣ = ∣JC ∣ and so α∗ < κ. Hence

for all x ∈ a(A) ∩B there is some α(x) < κ with x ∈ aα(x)(A) ∩B. But this then
implies aκ(A) ∩B = aκ+1(A) ∩B and so aκ(A) ∩B = a(A) ∩B.

�

Proposition 2.10 and Proposition 2.11 give us a sense of how many times we need
to repeatedly apply a1 before things stabilize. These will be important when we
want to encode the notion of the closure of a subpresheaf in another presheaf, and
in particular these lemmas will provide limits on how complex that encoding needs
to be.

We now turn to the definition of the category in which we will work. As being a
sheaf is a second order property, we will want to use a category which is equivalent
to Sheaf(C,JC), but where the objects and morphisms can be described in a first
order manner.

Definition 2.12. Let Sh∗(C,JC) be such that:
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(a) The objects of Sh∗(C,JC) are the separated presheaves for (C,JC).
(b) The morphisms of Sh∗(C,JC)[D,R] are the pairs ⟨f, d⟩ where:

– d ⊆D and d covers D.
– f ∶ d⇒ R is a map of separated presheaves.

(c) ⟨g, d∗⟩ ○ ⟨f, d⟩ = ⟨g ○ f, f−1(d∗)⟩ when ⟨f, d⟩ ∶D →D∗, and ⟨g, d∗⟩ ∶D∗ → R.
(d) If X ∈ obj(Sh∗(C,JC)) then the identity on X is idX = ⟨X,X, idX⟩.

It is worth pointing out that while we will treat Sh∗(C,JC) as if it was a category,
composition may not be associative and so Sh∗(C,JC) may not be a category.
However, there is a category closely related to Sh∗(C,JC) which is in fact equivalent
to Sheaf(C,JC).
Definition 2.13. For all ⟨f, df ⟩, ⟨g, dg⟩ ∈ Sh∗(C,JC)[D,R] we say ⟨f, df ⟩ is equiv-
alent to ⟨g, dg⟩, which we write as ⟨f, df ⟩ ≡ ⟨g, dg⟩, if (∀x ∈ df ∩ dg)f(x) = g(x).
We define Sh(C,JC) ∶= Sh∗(C,JC)/≡ and we let q ∶ Sh∗(C,JC) → Sh(C,JC) be the
quotient map.

In what follows we will often prefer to work with Sh∗(C,JC) instead of Sh(C,JC)
as it will allow us to avoid having to use equivalence classes of morphisms. As such
we will abuse notation and refer a structure in Sh∗(C,JC) as having a property
when its image under q has that property in Sh(C,JC). For example, we define
a product in Sh∗(C,JC) to be a diagram whose image under q is a product in
Sh(C,JC).

We say a map ⟨f, d⟩ ∶ D → R is total if d = D, i.e. if f is actually a map of
presheaves between D and R. Note that it is not the case that every map is equiv-
alent to a total one. However, there is an inclusion of categories ι ∶ Sep(C,JC) →
Sh∗(C,JC) where ι(A) = A for all separated presheaves and ι(f) = ⟨f,D⟩ for all
map f ∈ Sep(C,JC)[D,R]. Notice that a map is total if and only if it is in the
image of ι.

Lemma 2.14. There is an equivalence of categories: j ∶ Sh(C,JC) → Sheaf(C,JC)
where j ○ q ○ ι = a.

Proof. See [2]. �

As j○q ○ ι = a and as sheafification preserves finite limits, we can assume without
loss of generality that in Sh∗(C,JC) the limit of any finite diagram consisting
of total maps also consists of total maps. In particular we can assume that the
distinguished product of any finite collection of objects consists of total maps.

Now that we have our category Sh(C,JC) we can make precise the sense in
which the closed subpresheaves represent the subobjects of the separated presheaf
(in Sh(C,JC)).
Lemma 2.15. Suppose B ∈ obj(Sh∗(C,JC)), A ⊆ B and X is the subobject of B
in Sh∗(C,JC) containing ⟨inA,A⟩ ∶ A→ B. Then the following are equivalent:

(1) A is closed in B.
(2) If ⟨f,A′⟩ ∈ X then f ∶ A′ → B factors through inA (as a map of separated

presheaves).

Further every subobject contains a (necessarily) unique map of the form ⟨inA,A⟩
with A closed in B.

Proof. First notice that since any such f in (2) must be a monic (in the category of
separated presheaves) we can assume without loss of generality that f is actually
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an inclusion and that A′ ⊆ B.

(1) implies (2): Suppose A is closed in B. Then, as ⟨inA′ ,A′⟩ and ⟨inA,A⟩ are

in the same subobject of Sh∗(C,JC), we must have a(A′) = a(A) ⊆ a(B). Hence
as A is closed, we have A′ ⊆ a(A′) ∩B = a(A) ∩B = A.

¬ (1) implies ¬ (2): Let A′ = a(A) ∩B and hence A ⊊ A′. Then j ○ q(A) = a(A) =
a(A′) = j ○ q(A′) and so ⟨inA,A⟩ and ⟨inA′ ,A′⟩ are in the same subobject of B.
But ⟨inA′ ,A′⟩ does not factor through ⟨inA,A⟩ and so (2) does not hold. �

We will end this subsection with a discussion of what we mean when we say an
object of Sh∗(C,JC) has size κ. It turns out that there are several different notions
of what it means to be of size κ. We consider two of these notions here. These two
notions, along with two others relating to the natural number object, are studied
in [3] and we refer the interested reader to [3] for a more thorough discussion of the
virtues and problems surrounding each of these notions of size.

Definition 2.16. We say that A ∈ obj(Sh∗(C,JC)) is of pure size κ if ∣j○ q(A)∣ =
∣a(A)∣ = κ (i.e. the sheafification of A has size κ, as a presheaf).

From a set theoretic point of view the notion of the pure size of a sheaf is a
natural notion. One major drawback though of using pure size is that there are
separated presheaves which have size κ but whose sheafification has pure size 2κ

(in any model of set theory).

Definition 2.17. We say that A ∈ obj(Sh∗(C,JC)) is κ-generated if there is an
A∗ ∈ obj(Sh∗(C,JC)) such that ⟨A∗,A, in⟩ ≡ ⟨A,A, id⟩ in Sh∗(C,JC) and ∣A∗∣ ≤ κ.

An object A ∈ obj(Sh∗(C,JC)) is κ-generated if it can be covered by a sub-
presheaf of size at most κ. We have the following relationship between the generated
size and pure size of an object of Sh∗(C,JC).

Lemma 2.18. Suppose A ∈ obj(Sh∗(C,JC)) is κ-generated and ∣mor(C)∣ = γ. Then
there is a ζ with ζ ≤ κγ such that A is of pure size ζ.

Proof. Without loss of generality we can assume ∣A∣ ≤ κ. Now for every x ∈ a(A)
let x∗ ∶ ∣mor(C)∣ → A ∪ {∗} be such that x∗(f) = a(A)(f)(x) if this is well-defined
and in A and ∗ otherwise. As a(A) is separated we have x∗ = y∗ if and only if
x = y. Hence ∣a(A)∣ ≤ κγ . �

Lemma 2.18, in general, cannot be improved upon.

Example 2.19. Let C be the category with two objects c, d and let the only non-
identity maps be {fi ∶ i ∈ γ} ⊆ C[c, d]. Let the only non-total sieve in JC be
{fi ∶ i ∈ γ} ∈ JC(d). It is then immediate that if A ∈ Sh∗(C,JC) and ∣A(c)∣ = κ then
the pure size of A is κγ .

2.2. Sheaf Languages and Sheaf Models. Now that we have defined Sh∗(C,JC)
we can define our notion of sheaf languages and sheaf models. As with first order
languages we will have sorts, functions and relations. However, because we have
fixed a Grothendieck topos in which our models will live, we are able to expand
the language to take this into account. Specifically in usual first order languages
if S is a sort then a constant of type S is realized as an element of the realization
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of S, i.e. as a map from the terminal object into the realization of S. In our sheaf
languages though we will be able to include generalized constants of type S which
are functions whose interpretations are generalized elements of the realization of
S, i.e. maps from an arbitrary fixed objects in our Grothendieck topos into the
realization of S. We will also allow sorts which are, essentially, arbitrary finite
combinations of sorts from our language and objects in our Grothendieck topos.

Before we give our definition of a sheaf language though, we will fix for the rest
of the paper a single distinguished copy of the subobject classifier of Sh∗(C,JC)
which we denote by Ω.

Definition 2.20. A sheaf language L consists of the following:

● A collection of sorts, SL, which will always be closed under taking finite
sequences.

● A collection of object sorts, OL, along with a function rL ∶ OL → obj(Sh∗(C,JC))−
Ω. We assume that no sort in OL is a sequence of other sorts.

● A collection of function symbols, FL, each of which has a domain and
codomain which is a sort. We assume FL has, for each collection of sorts
S1, . . . , Sn, projection functions πj ∶ ⟨S1, . . . , Sn⟩ → Sj.

● A collection of relation symbols, RL, where to each relation symbol we
associate a sort which is its type. We will often say the domain of a
relation is its type and its codomain is Ω. We assume RL has, for each sort
S, a relation =S of type ⟨S,S⟩.

From now on L and its variants will always represent sheaf languages.
Each sort A ∈ OL will be interpreted in all L-structures by the object rL(A).

In the case where the Grothendieck topos is Set, and hence where every object is
the colimit of terminal objects, a map f ∶ A × S → B × T with A,B ∈ OL can be
interpreted as a sequence of maps ⟨fa ∶ S → T s.t. a ∈ rL(A)⟩ and ⟨f∗a ∶ S → rL(B)
s.t. a ∈ rL(A)⟩. Hence in the special case where our Grothendieck topos is Set, our
notion of a sheaf language is equivalent to the classical notion of a language with
the added ability for maps to take values in a fixed set as opposed to a sort.

Definition 2.21. We say a sheaf language L is κ-generated if

● SL is of size at most κ.
● Each sort A ∈ OL, rL(A) is κ-generated.

We define the pure size of L similarly. We let ∣L∣ denote least κ such that L is
κ-generated.

Note that in Set a language L is κ-generated if and only if it is of pure size κ if
and only if every model for which no sort is empty has size at least κ.

We now give our notion of an L-structure.

Definition 2.22. An L-structure M consists of the following:

● For each S ∈ SL an object SM of Sh∗(C,JC) such that:
– If S = ⟨S1, . . . , Sn⟩ then SM = ∏i≤n S

M
i is the product of the sequence

as presheaves.
– If S ∈ OL then SM = rL(S).

● For each function symbol f ∶ S → T a map fM ∶ SM → TM in Sh∗(C,JC)
such that:

– If πj is a projection function then πMj ∶ ∏i≤n S
M
i → SMj is image under

ι of the corresponding projection map in Sep(C,JC).
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● For each relation symbol R of sort S a pair (RMs ,RM) where:
– RM ∶ SM → Ω.
– RMs ⊆ SM where RMs is closed in SM.
– For all x ∈ SM, RM(x) ∶= {f ∈ C[−,dom(x)] ∶ SM(f)(x) ∈ RMs }.
and
– For each relation symbol =S, (=S)Ms ∶= {(x,x) ∶ x ∈ SM} ⊆ SM × SM.

Note if M is an L-structure and if S = ⟨S1, . . . , Sn⟩ ∈ SL then ⟨SM, ⟨πMi ∶ i ≤ n⟩⟩
is the distinguished product of SM1 , . . . , SMn in Sh∗(C,JC) (as we have assumed all
distinguished products are total). Also notice by Lemma 2.15 if R ∈ RL is of type
S then either element of the pair (RMs ,RM) determines the other uniquely (and
determines a unique subobject of SM). While it will often be easier to deal with
RMs there will be situations, such as when dealing with connectives, when we will
need RM. As such we have required the realization of a relation symbol to contain
both.

There is a subtle point worth mentioning, even though it will not play an impor-
tant role in what follows. As our language determines, for some sorts, the objects
which interpret those sorts, there are languages for which there are no L-structures.
For example, suppose A,B ∈ obj(Sh∗(C,JC)) are such that Sh∗(C,JC)[A,B] = ∅,
e.g. if B is a proper closed subset of A (and hence is an element of a proper subob-
ject). If our language requires there to be a function whose domain is A and whose
codomain is B, then for that language there would be no L-structures.

One way in which we could avoid this dilemma would be to only allow the sorts
in OL to be in the domain of function symbols. However we have chosen not to do
this as it limits the languages which we can consider and none of our results are
harmed by the possibility that our language might not admit any structures.

We now give three important definitions.

Definition 2.23. Suppose L0 ⊆ L1 are sheaf languages and M is an L1-structure.
We define the restriction ofM to L0, writtenM∣L0 , to be the unique L0-structure
such that:

● SM = SM∣L0 for all S ∈ SL0 .

● fM = fM∣L0 for all f ∈ FL0 .

● RMs = RM∣L0
s for all R ∈ RL0 .

We say that an L1-structure M is an expansion of an L0-structure N (to L1) if
N =M∣L0 .

Definition 2.24. We say an L-structure is κ-generated if

● L is κ-generated.
● Each sort SM is κ-generated.

We define the pure size of an L-structure similarly.

Definition 2.25. SupposeM,N are L-structures. An L-homomorphism α from
M to N , α ∶ M → N , is a collection of maps ⟨αS ∶ S ∈ SL⟩ in Sh∗(C,JC) such that

● For each S ∈ SL, αS ∶ SM → SN .
● For each S ∈ OL, αS = idSM .
● For each f ∶ S → T in FL we have αT ○ fM ≡ fN ○ αS.
● For each R ∈ RL of type S, we have RM ≡ RN ○ αS.

We say two L-homomorphisms α0, α1 ∶ M → N are equivalent, written α0 ≡ α1,
if for each sort S ∈ SL, α0

S ≡ α1
S.
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We call an L-homomorphism from M to N an inclusion if each component is
an inclusion. We say thatM is an L-substructure of N , writtenM⊆N , if there
is an inclusion from M to N , i.e. the inclusion maps ⟨inS ∶ SM → SN s.t. S ∈ SL⟩
form an L-homomorphism.

We define composition of L-homomorphisms in the obvious way (i.e. component
wise). We define the identity L-homomorphisms, idN , on an L-structure N to be
the homomorphism which is the identity in each component. We also say α ∶ M →
N and β ∶ M → N are inverse L-isomorphisms if α ○ β ≡ idN and β ○ α ≡ idM.
In other words α and β are inverse L-isomorphisms if for each sort S ∈ SL, q(αS)
and q(βS) are inverses in Sh(C,JC).

An important property of L-homomorphisms is that they are absolute.

Lemma 2.26. Suppose M,N are L-structures and for each S ∈ SL, αS ∶ SM →
SN . Further suppose V is a admissible set with {(C,JC),M,N ,L, ⟨αS ∶ S ∈
SL⟩} ∈ V . Then V ⊧“α is an L-homomorphism” if and only if Set ⊧“α is an
L-homomorphism”.

Proof. First observe that by Proposition 2.10 we have that if {⟨f, df ⟩,D,R} ∈ V
with ⟨f, df ⟩ ∈ Sh∗(C,JC)[D,R] (in Set) then ⟨f, df ⟩ ∈ Sh∗(C,JC)[D,R]V as {x ∈
D ∶ (∃α){f ∈ mor(C) ∶ Df(x) ∈ df} ∈ JαC}V = D. Hence we have M and N are
L-structures in V and αS ∶ SM → SN for each S ∈ SL.

The result then follows from the fact that composition in Sh∗(C,JC) is absolute
and ΩV ⊆ Ω. �

We now show how to transform any directed diagram into one where all maps
are total and the size of the resulting structures don’t change too much. We can
extend the notion of a total map to models by saying that an L-structure M is
total if every function symbol is interpreted as a total map, or equivalently, if every
sort and function symbol are in the image of ι. Similarly we say that a directed
system of L-homomorphisms is total if all components are, or if equivalently it is
the image under ι of a directed system in Sep(C,JC).
Proposition 2.27. Suppose ⟨I,⪯⟩ is a partial order such that every pair of elements
has an upper bound. Further suppose D ∶= ⟨{Mi ∶ i ∈ I},{αi,j ∶ Mi →Mj , i ⪯ j}⟩ is
a directed system of L-structures and L-homomorphisms. Then there is a directed
system D0 = ⟨{Ni ∶ i ∈ I},{βi,j ∶ Ni →Nj , i ⪯ j}⟩ such that:

(1) For each i ∈ I, Mi is an L-substructure of Ni with inclusion maps ini ∶
Mi →Ni which are isomorphisms (in Sh∗(C,JC)).

(2) For all i, j ∈ I with i ⪯ j, βi,j ○ ini = inj ○ αi,j. In other words D0 is
isomorphic, as a directed system, to D.

(3) D0 is total, i.e. there is a directed system D∗
0 = ⟨{N ∗

i ∶ i ∈ I},{βi,j,∗ ∶ N ∗
i →

N ∗
j , i ⪯ j}⟩ in Sep(C,JC) with D0 = ι[D∗

0].
(4) If ⟨N ∗

+ , ⟨βi,∗ ∶ N ∗
i → N ∗

+ , i ∈ I⟩⟩ is the directed limit of D∗
0 in Sep(C,JC)

then ⟨ι(N ∗
+ ), ⟨ι(βi,∗) ∶ i ∈ I⟩⟩ is a directed limit of D0 in Sh∗(C,JC). Let

N+ = ι(N ∗
+ )

(5) ⋃S∈SL ∣SN+ ∣ + ∣L∣ = ⋃S∈SL ⋃i∈I ∣SMi ∣ + ∣L∣.
Proof. We will first show that it suffices to restrict our attention to when αi,j and
all interpretations of functions are total.

Let VS be such that VS ≺n Set (for some sufficiently large n), tc({D,L}) ∈ VS and
∣VS ∣ = ⋃S∈SL ⋃i∈I ∣SMi ∣. Let t ∶ VS → V cS be the transitive collapse of VS . Working
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inside V cS we can let D∗
0 be the result of applying i ○ j ○ q to each component of D,

i.e. of first mapping each component to Sheaf(C,JC) and then mapping the result
to Sep(C,JC) via the inclusion of categories, i. We then let D0 = ι(D∗

0) (and in
particular (3) follows by definition)

As j ○ q ○ ι(A) = a(A) for any separated presheaf, we then have inclusion maps
ini ∶ Mi → Ni for each i ∈ I. Further, by Lemma 2.14 we have (q ○ ι) ○ i ○ j ∶
Sh(C,JC) → Sh(C,JC) is isomorphic to the identity functor. Hence the inclusion
maps form an isomorphism of directed systems and (2) follows.

As j○q ○ ι = a, a preserves limits and j○q is an equivalence of categories, we have
that ι preserves limits as well. Hence (4) holds.

Lastly we have that ⋃S∈SL ∣SN+ ∣ + ∣L∣ = ⋃S∈SL ⋃i∈I ∣SNi ∣ + ∣L∣ which further equals

⋃S∈SL ⋃i∈I ∣a(SMi)V cS ∣ + ∣L∣. But as ∣V cS ∣ = ⋃S∈SL ⋃i∈I ∣SMi ∣ + ∣L∣ we have that (5)
holds as well.

�

The method used in the proof of Proposition 2.27 of working inside a transitive
collapse and then observing that the result has the properties we want and isn’t
to large (as the transitive collapse is of fixed size) is one which we will use several
times in Section 4.

It is worth pointing out that if α as an L-homomorphism then αS must preserve
=S for each sort S and hence αS must be a monic. This observation, along with
Proposition 2.27 shows that we can replace any L-homomorphism by an isomorphic
one (in the obvious sense) which in an inclusion.

2.3. Sheaf Formulas and Sheaf Sentences. Now that we have our notion of a
sheaf language and a sheaf structure we can define our notion of a sheaf formula.
Each sheaf formula will be interpreted in a structure as either a map between the
realization of two sorts, or a map from the realization of a sort to the subobject
classifier. We want the latter collection of sheaf formulas to be closed under the
basic logical operations of ∀, ∃, as well as the infinitary ⋁ and ⋀. In addition to
these operations we will also want our sheaf formulas to be closed under all finitary
connectives from our fixed Grothendieck topos. Such a finitary connective is a map
from some finite power of the subobject classifier to the subobject classifier.

In the category Set, all connectives between {⊺,�}n and {⊺,�} can be built
from the standard connectives ∧,∨,¬. Hence in the category of Set, there is no
difference between requiring the collection of formulas to be closed under {∧,∨,¬}
and requiring the collection of formulas to be closed under all connectives between
{⊺,�}n and {⊺,�} for all finite n. This however is a peculiarity of the category Set
and in a general Grothendiek topos it need not be the case that all maps from Ωn

to Ω can be generated from the maps {∧,∨,¬}.

Definition 2.28. We define the collection Forκ+,ω(L) of partial sheaf formulas
over L (of complexity at most κ) to be the smallest collection where:

(L) FL ∪ RL ⊆ Forκ+,ω(L).
(0) If A,B ∈ OL and α ∶ rL(A) → rL(B) then ⟨0, α⟩ ∈ Forκ+,ω(L) with domain

A and codomain B.
(1) If f, g ∈ Forκ+,ω(L) and cod(f) = dom(g) then ⟨1, g, f⟩ ∈ Forκ+,ω(L), with

domain dom(f) and codomain cod(g). We abbreviate ⟨1, g, f⟩ by g ○ f .
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(2) If {fi ∶ i ≤ n} ⊆ Forκ+,ω(L) all with the same domain and such that {cod(fi) ∶
i ≤ n} ⊆ SL, then ⟨2, fi ∶ i ≤ n⟩ ∈ Forκ+,ω(L) with domain dom(fi) and
codomain ⟨cod(f1), . . . , cod(fn)⟩. We abbreviate ⟨2, fi ∶ i ≤ n⟩ as ∏i≤n fi.

(3) If {fi ∶ i ≤ n} ⊆ Forκ+,ω(L) each with the same domain and each with
codomain Ω, and if X ⊆ Ω with β ∶ Xn → X then ⟨3, β,X, fi ∶ i ≤ n⟩ ∈
Forκ+,ω(L), with domain dom(fi) and codomain Ω. We abbreviate ⟨3, β,X, fi ∶
i ≤ n⟩ as β ○X ∏i≤n fi and we call X the confines of β ○X ∏i≤n fi.

(4,5) If ∣K ∣ ≤ κ and {fi ∶ i ∈ K} ⊆ Forκ+,ω(L) all with the same domain and
all with codomain Ω then ⟨4, fi ∶ i ∈ K⟩, ⟨5, fi ∶ i ∈ K⟩ ∈ Forκ+,ω(L) with
domain dom(fi) and codomain Ω. We abbreviate ⟨4, fi ∶ i ∈ K⟩ as ⋁i∈K fi
and ⟨5, fi ∶ i ∈K⟩ as ⋀i∈K fi.

(6,7) If f, g ∈ Forκ+,ω(L) with same domain, cod(f) = Ω and the cod(g) ∈ SL then
⟨6, f, g⟩, ⟨7, f, g⟩ ∈ Forκ+,ω(L) with domain dom(f) and codomain Ω. We
abbreviated ⟨6, f, g⟩ as (∀g)f and ⟨7, f, g⟩ as (∃g)f .

We let For∞,ω(L) = ⋃κ∈ORD Forκ+,ω(L)

Definition 2.29. For ψ0, ψ1 ∈ Forκ+,ω(L) we say ψ0 is a subformula of ψ1,
written ψ0 ⪯ ψ1, if ψ0 ∈ tc(ψ1). We will also abuse notation and say ⟨X,β⟩ ⪯ ψ if
β ○X ∏i≤n fi ⪯ ψ for some ⟨fi ∶ i ≤ n⟩. Note that ⪯ is well-founded.

With the exception of (3), each item from Definition 2.28 has a self explanatory
interpretation. We call a map Xn → X where X ⊆ Ω a partial connective and
formulas from Definition 2.28 (3) are meant to interpret partial connectives. Note
that as Ω is injective, every partial connective is the restriction of a connective to
its confines.

Notice the domain of every formula is a sort and the codomain is either a sort
or Ω. In particular connectives are not themselves formulas. Given a sheaf L-
structure and a sheaf formula ϕ, we will want to be able to expand our sheaf
structure so that ϕ is named, i.e. so that ϕ is equivalent to a function or relation
in the language. In order to do this we will want to simultaneously name every
subformula of ϕ. However, if we had allowed connectives to be formulas, in any
formula which contains a connective we would need a sort isomorphic to Ω. This
would pose a problem though as there are weak sites of size κ for which the subobject
classifier Ω is not of generated size less than 2κ. In this situation, if we allowed
connectives to be formulas, any structure which had a named connective would
itself have to be of generated size at least 2κ (even though the weak site itself was
only of size κ). We solve this problem by dealing with partial connectives instead
of with connectives. The cost however is that not all (partial) sheaf formulas will
be interpretable in all sheaf models.

Definition 2.30. We define ⊑ to be the smallest partial order on For∞,ω(L) such
that:

● ⟨3, β0,X, fi ∶ i ≤ n⟩ ⊑ ⟨3, β1, Y, gi ∶ i ≤ n⟩ if and only if X ⊆ Y , β0 = β1∣X and
fi ⊑ gi for each i ≤ n.

● Otherwise ⟨a0, b
0
i ∶ i ≤ ζ0⟩ ⊑ ⟨a1, b

1
i ∶ i ≤ ζ1⟩ if and only if a0 = a1, ζ0 = ζ1 and

for each i ≤ ζ0, b0i ⊑ b1i .
We say a formula is total if it is maximal in ⊑.

Intuitively ϕ0 ⊑ ϕ1 if ϕ0 and ϕ1 are built from simpler formulas in exactly
the same way, except whenever there is a partial connective the domain of that
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connective in ϕ1 contains the domain in ϕ0 and both connectives take the same
values when they are both defined.

The following is then immediate

Lemma 2.31. For every ψ there is a total ψ′ with ψ ⊑ ψ′. Further a formula ψ is
total if and only if whenever ⟨3, β,X, ⟨fi ∶ i ≤ n⟩⟩ ⪯ ψ, X = Ω

Proof. This follows immediately from the fact that Ω is injective and hence any
partial map Xn →X ⊆ Ω can be extended to a map Ωn → Ω. �

Now that we have our notion of sheaf formula we want to describe how to inter-
pret a partial sheaf formula in a sheaf model. Unfortunately though not all partial
sheaf formulas will be interpretable in all sheaf models. In particular if we try
and compose a partial connective with a formula which takes values outside of the
confines of the partial connective, then we run into problems. We will deal with
this issue by allowing some interpretations to take the special value of ⇑.
Definition 2.32. SupposeM is an L-structure. For each ϕ ∈ Forκ+,ω(L) we define
ϕM ∶ dom(ϕ)M → cod(ϕ)M by induction along ⪯. Notice, that as a base case we
have already defined ϕM when ϕ ∈ RL ∪ FL.

Next, if there is a ψ ⪯ ϕ such that ψM =⇑ then ϕM =⇑. Otherwise we have the
following:

● If ⟨0, α⟩ ∈ Forκ+,ω(L) then ⟨0, α⟩M = α.
● If f ○ g ∈ Forκ+,ω(L) then (f ○ g)M = gM ○ fM.
● If ∏i≤n fi ∈ Forκ+,ω(L) then [∏i≤n fi]M is a morphism g from dom(fi)M

to ∏i≤n cod(fi)M such that πMj ○ g = fMj for each j ≤ n.

● If β○X∏i≤n fi ∈ Forκ+,ω(L) then [β○X∏i≤n fi]M = β○∏i≤n f
M
i if ran(fMi ) ⊆

X for each i ≤ n and ⇑ otherwise.
● If {fi ∶ i ∈ I} ⊆ Forκ+,ω(L) then [⋁i∈I fi]M = ⋁i∈I fMi and [⋀i∈I fi]M =
⋀i∈I fMi .

● If (∀g)f, (∃g)f ∈ Forκ+,ω(L) then [(∀g)f]M = (∀gM)fM and [(∃g)f]M =
(∃gM)fM.

We say ϕ is legal for M if ϕM ≠⇑.

We then have the following relationship between ⊑ and being legal.

Lemma 2.33. Let M be a sheaf model and let ϕ0 ⊑ ϕ1. Then

(a) If ϕ0 is legal for M then ϕ1 is legal for M.
(b) If ϕM0 is legal for M then ϕM0 = ϕM1 .
(c) If ϕ0 is total then it is legal for all L-structures.

Proof. (a), (b) follow by an easy induction on ⪯. For (c) notice by Lemma 2.31
that if ϕ0 is total then every connective has confines Ω. �

It will often be useful to have a formula be equivalent to a function or relation
in our language.

Definition 2.34. Suppose ϕ ∈ Forκ+,ω(L) and Hϕ ∈ FL ∪ RL with dom(ϕ) =
dom(Hϕ) and cod(ϕ) = cod(Hϕ). If ϕ is legal for an L-structureM and ϕM ≡HMϕ
then we say Hϕ is a name for ϕ (in M).

We then have the following easy connection between names for formulas and
homomorphisms which preserve formulas.
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Lemma 2.35. Suppose A ⊆ Forκ+,ω(L), SL = SLA and [FLA − FL] ∪ [RLA − RL] =
{Hϕ ∶ ϕ ∈ A} where dom(Hϕ) = dom(ϕ) and cod(Hϕ) = cod(ϕ).

Then for any L-structure M for which each ϕ ∈ A is legal, there is a unique
expansion MA to LA where Hϕ names ϕ for each ϕ ∈ A.

Definition 2.36. Suppose M,N are L-structures, α ∶ M → N and ϕ ∶ S → T is
legal for both M and N . We say that α preserves ϕ if:

● αT ○ ϕM ≡ ϕN ○ αS if T ∈ SL.
● ϕM ≡ ϕN ○ αS if T = Ω.

The following is then immediate.

Lemma 2.37. SupposeM,N are L-structures and A ⊆ Forκ+,ω(L) with each ϕ ∈ A
legal for both M and N . Then an L-homomorphism α ∶ M → N preserves every
formula in A if and only if α ∶ MA →NA is also an LA-homomorphism.

We have shown how to interpret sheaf formulas in L-structures. However, these
interpretations don’t provide us with any statements whose truth value we can
externally evaluate (i.e. in Set and not in the Sh(C,JC)). The notion of a sheaf
sentence will provide us with statements about L-structures which will either be
true or false (in our model Set of ZFC).

Definition 2.38. We let Senκ+,ω(L) be the smallest collection such that:

● If f, g ∈ Forκ+,ω(L) with dom(f) = dom(g) and cod(f) = cod(g) then
⟨9, f, g⟩ ∈ Senκ+,ω(L). We abbreviate ⟨9, f, g⟩ as f ≡ g. We call these
basic sentences

● If T ∈ Senκ+,ω(L) then so is ⟨10, T ⟩. We abbreviate ⟨10, T ⟩ as ¬̌T .
● If ∣K ∣ ≤ κ and {Ti ∶ i ∈ K} ⊆ Senκ+,ω(L) then ⟨11, Ti ∶ i ∈ K⟩, ⟨12, ⟨Ti ∶
i ∈ K⟩⟩ ∈ Senκ+,ω(L). We abbreviate ⟨11, ⟨Ti ∶ i ∈ K⟩⟩ by ⋁̌i∈KTi and
⟨12, ⟨Ti ∶ i ∈K⟩⟩ by ⋀̌i∈KTi.

We let Sen∞,ω(L) = ⋃κ∈ORD Senκ+,ω(L).

The intuition is that a basic sentence determines whether or not two formulas are
interpreted by equivalent maps. Arbitrary sentences are then boolean combinations
of basic ones.

Definition 2.39. If T0 ∈ Senκ+,ω(L) ∪ Forκ+,ω(L) and T1 ∈ Senκ+,ω(L) we say
T0 ⪯ T1 if T0 ∈ tc(T1). In this case we say that T0 is a subsentence or subformula
of T1 (as appropriate). We also define a fragment to be a subset of For∞,ω(L) ∪
Sen∞,ω(L) which is closed under ⪯.

Now that we have our collection of sentences we want to define when an L-
structure satisfies a sentence. We define this by induction.

Definition 2.40. Suppose T ∈ Senκ+,ω(L). If there is a formulas ϕ ⪯ T such that
ϕ is not legal for M then T is not legal for M and M /⊧ T . If however T is legal
for M then we define M⊧ T by induction as follows:

● M ⊧ f ≡ g if and only if fM ≡ gM.
● M ⊧ ¬̌T if and only if M /⊧ T (and T is legal for M).
● M ⊧ ⋁̌i∈ITi if there is some i ∈ I such that M⊧ Ti
● M ⊧ ⋀̌i∈ITi if M⊧ Ti for each i ∈ I.
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It is worth taking a second to discuss the difference between ⋀ and ⋀̌, and

⋁ and ⋁̌. We can think of formulas with codomain Ω as functions which takes
a structure and returns an internal subsets of given sort, i.e. subobjects of the
sort. Then ⋀ and ⋁ are the (internal) operations inherited from the corresponding
lattice operations on Ω. In a similar vein we can think of a sentence as a function
from structures to {⊺,�}, the subobject classifier of Set. In this way a sentence
represents an external subset of structures. Then ⋀̌ and ⋁̌ are then the (external)
operations inherited from the corresponding lattice operations on {⊺,�}.

There is a particular class of sentences which will play an important role in
Section 4. We say a sentence T ∈ Senκ+,ω(L) is simple if for each ϕ ∈ Forκ+,ω(L),
ϕ ⪯ T implies ϕ ∈ FL∪RL. In other words a sentence is simple if it does not make any
mention of any of the operations used in constructing the formulas of the language.
Note that simple sentences are legal for all L-structures.

Lemma 2.41. For each T ∈ Senκ+,ω(L) let P (T ) = {ϕ ∈ Forκ+,ω(L) ∶ ϕ ⪯ T}.
Then for each NT = ⟨Hϕ ∶ ϕ ∈ P (T )⟩ with NT ∩ P (T ) = ∅ there is a basic sentence
TNT such that if NT names all elements of P (T ) in M then M⊧ T if and only if
M⊧ TNT .

Proof. TNT is obtained from T by replacing all occurrences of (f ≡ g) ⪯ T with
Hf ≡Hg for any f, g ∈ P (T ). �

Lemma 2.41 tells us that we can reduce the satisfaction relation for sentences to
the satisfaction relation for simple sentences when all subformulas are named. This
will be very important when we want to apply our encodings in Section 4.

We now end this section by considering how our sheaf languages, sheaf formulas
and sheaf models relate to the Kripke-Joyal semantics for the Mitchell-Bénabou
language (see [10]). First recall that if ϕ ∈ L∞,ω(L) is of type A (where A is an
object of Sh(C,JC)) then the Mitchel-Bénabou language allows us to associate to
ϕ a subobject {x ∶ ϕ(x)} ⊆ A. If α ∶ U → A is then a generalized element of
A the Kripke-Joyal semantics says that U forces ϕ(α), U ⊩ ϕ(α), if and only if
ran(α) ⊆ {x ∶ ϕ(x)}.

In particular we have U ⊩ ϕ(α) if and only if α factors through the subobject
{x ∶ ϕ(x)}. But if ϕ∗ ∶ A→ Ω is the map corresponding to the subobject {x ∶ ϕ(x)},
then U ⊩ ϕ(α) if and only if ϕ∗ ○ α factors through ⊺ ∶ 1→ Ω, i.e. ϕ∗ ○ α ≡ ⊺○!U .

Now suppose S ∈ SL, U∗ ∈ OL with rL(U∗) = U , and M is an L-structure such
that SM = A. Next let ϕ(x) be the formula in For∞,ω(L) with domain S and

codomain Ω which is constructed in the same fashion as ϕ(x). Then ϕM(x) is a
map from A to Ω which has the same interpretation as the formulas ϕ(x) (from the
Mitchell-Bénabou language of Sh(C,JC)). Further, if α ∶ U∗ → S is any function
symbol in L then U ⊩ ϕ(αM) if and only if M⊧ ϕ ○ α ≡ ⊺○!U .

In this way we see that the (analog of) Kripke-Joyal semantics for the Mitchell-
Bénabou language is subsumed by our notion of a sheaf formula.

3. Representations and Components

In Section 4 we will prove analogs of the directed embedding theorem, the down-
ward Löwenheim-Skolem theorem, a completeness theorem as well as an analog of
Barwise’s compactness theorem. We will do this by showing that each of these the-
orems can be reduced to the corresponding theorem on structures in the category
of sets. In order make this reduction we will need to do three things.
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(1) For each sheaf language L we need to find an encoding of L by a first order
language Enc(L) and a for each sheaf L-structureM an encoding ofM by
a Enc(L)-structure Enc(M).

(2) For each fragment A of L formulas and each {Hϕ ∈ FL ∪ RL ∶ ϕ ∈ A} we will
need a sentence of L∞,ω(Enc(L)) which holds of Enc(M) if and only if for
each ϕ ∈ A, Hϕ is a name for ϕ in M.

(3) For each simple sentence T we will need an encoding of T by a sentence
⟪T⟫ ∈ L∞,ω(Enc(L)) where Enc(M) ⊧ ⟪T⟫ if and only if M⊧ T .

We will accomplish these three goals by defining components which can be real-
ized in a Set-model.

A component is a pair consisting of a language along with a Π2-theory in the
language, which is required to be satisfied for the component to be realized. We
will combine these components to build the necessary encodings. Note the fact that
all theories are Π2 will be important for proving the directed embeddings theorem
(Theorem 4.1).

Definition 3.1. A component, C(P ), consists of a pair ⟨Lan[C(P )],Th[C(P )]⟩
where

● Lan[C(P )] is a language.
● Th[C(P )] ⊆ L∞,ω(Lan[C(P )]) is a Π2 theory.

IfM is an L-structure we say C(P ) is realized inM if Lan[C(P )] ⊆ L andM⊧
Th[C(P )]. We also say a component C(P0) is contained in a component C(P1),
written C(P0) ⊆ C(P1) if Lan[C(P0)] ⊆ Lan[C(P1)] and ⊢ Th[C(P1)] → Th[C(P0)].

We will often abuse notation and use C(P ) to refer to both Lan[C(P )] and
Th[C(P )] when no confusion will arise. For example, if L0,L1 are two copies of a
language and L0 ⊆ L1 we will write C(P )[L0/L1] for the component ⟨(Lan[C(P )]−
L0)∪L1,Th[C(P )][L0/L1]⟩. We also will writeM⊧ C(P ) forM⊧ Th[C(P )], and
X ∈ C(P ) for X ∈ Lan[C(P )], etc.

Each component which we introduce will be intended to encode some part of a
sheaf language, sheaf model, sheaf formula, or sheaf sentence. As we introduce these
components we will also explain how they are related to what they are intended
to encode. This relationship will often take the form of a ∆0-definable surjection
or bijection. When this is the case we will abuse notation and refer to the map
which takes models of a component and returns what it represents by Rep. We will
likewise abuse notation and refer to its inverse, i.e. the map which takes some part
of our sheaf structure and returns a model of a component which encodes it, by
Enc. In this case we say that Rep(M) is the representation of M and Enc(A)
is the encoding of A.

While we will always state explicitly which component a symbol represents, we
will find that by the end of the paper the notation can get a little unwieldy. To help
visually signal what is going on we will use the following convention. If some part
of the language of the component is not contained in any other component then

we will place two dots, as in [̈], over the name. Usually fundamental components,
from which others components will be built, will be of this form.

If the component consists purely of other components which collectively satisfy
some extra sentences and if the component has an explicit name describing it,
then we place four dots, as in

....
[] , over the name of the component. If however

the component consists purely of other components which collectively satisfy some



ON MODEL THEORY OF L∞,ω IN A FIXED GROTHENDIECK TOPOS 19

extra sentences and the purpose of the component is to express the relationship
between these other components then we place the description of the components
within two angled brackets like ⟪⟫.

We break this section into three parts. In Section 3.1 we define our basic com-
ponents. These are the components from which everything else will be built. In
Section 3.2 we use our basic components to define encodings of L-structures. Then
in Section 3.3 we define the encodings used for expressing the fact that a fragment
is named and for encoding simple sentences.

3.1. Basic Components. We break our basic components into three groups. In
Section 3.1.1 we define the components which encode pieces of the category of
separated presheaves. In Section 3.1.2 we define the components needed to encode
when one subpresheaf is the closure of another. We will accomplish this by defining
a component which allows us to iterate the operation of a1(⋅)∩B until it stabilizes.
In order to do this iteration we will need to define a sort which contains enough
ordinals. In Section 3.1.3 we define components which represent maps from a sort to
the subobject classifier. Defining these maps will require some care as we don’t want
our encoded models to have to encode all of the subobject classifier. To accomplish
this we will use the fact that each element of Ω is a subset of the morphisms C.
We will then define a map from S to Ω as a relation I on S ×mor(C) where x gets
mapped to {f ∈ mor(C) ∶ I(x, f)}.

We end this section on basic components in Section 3.1.4 where we define struc-
tures which are not components (but will be part of a component in Section 3.3.1).
Specifically we define the structure which will allow us to encode partial connectives.
This structure is not a component as it is not something which can be realized in a
Set-structure. Rather this structure will be a collection of conditions on formulas
which allow us to encode the partial connective, given that our encoding is treating
elements of Ω as subsets of mor(C).
3.1.1. Sorts, Subpresheaves and Functions. In this section we will define compo-
nents which are related to separated presheaves.

Definition 3.2. We say S̈ is an encoded sort if it is a component which contains:

● For each c ∈ obj(C) a (unique) sort Sc.
● For each f ∈ C[c, d] a (unique) function Sf ∶ Sd → Sc.

and which says for each c ∈ obj(C):

● (∀x ∶ Sc)⋀f,g,h∈mor(C),h=g○f S
f ○ Sg(x) = Sh(x).

● (∀x ∶ Sc)Sidc(x) = x.
● (∀x, y ∶ Sc)⋀I∈J(c)[⋀f∈I Sf(x) = Sf(y)] → x = y.

Let Rep ∶ Mod(S̈) → obj(Sep(C,JC)) be such that Rep(M)(c) = (Sc)M for
c ∈ obj(C) and Rep(M)(f) = (Sf)M for f ∈ mor(C). It is then immediate that
Rep is a ∆0-definable bijection, and we let Enc be its inverse. In particular encoded
sorts are exactly the structures which capture separated presheaves on (C,JC).

We will use the shorthand S̈M for Rep(M∣S̈) when S̈ is an encoded sort in M.

In what follows S̈ and its variants will be encoded sorts. Note that encodings and
representations preserve size.

Lemma 3.3. Suppose A ∈ obj(Sep(C,JC)). Then ∣A∣ = ∣Enc(A)∣.
Note the following is immediate.
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Lemma 3.4. If S̈1, . . . , S̈n are encoded sorts and S̈∗ is such that Sc∗ = ⟨Sc1, . . . , Scn⟩
and Sf∗ = ⟨Sf1 , . . . , Sfn⟩ then S̈∗ is an encoded sort, which we denote by S̈1 ×⋯× S̈n.

Further, if S̈1, . . . , S̈n are encoded sorts inM then so is S̈∗ and S̈M∗ = S̈M1 ×⋯×S̈Mn .

Our next component captures the notion of being a subpresheaf. Before we give
this component though we will need a related definition.

Definition 3.5. Suppose S̈ ⊆ L is an encoded sort and suppose ϕ⃗ = ⟨ϕc ∶ c ∈ obj(C)⟩
where for each c ∈ obj(C), ϕc ∈ L∞,ω(L) is a formula whose free variable is of sort

Sc. We say ϕ⃗ is an encoded formula (of sort S̈) in a structure, if the structure
satisfies the theory ThFor(ϕ⃗) which says:

● S̈ is an encoded sort.
● ⋀c,d∈obj(C)⋀f∈C[c,d](∀x ∶ Sd)ϕc(x) → ϕd(Sf(x)).

An encoded formula is a collection of formulas which cohere in a way so as to
describe a subpresheaf of our encoded sort. If ϕ⃗ is an encoded formula of sort
S̈ in a structure M, then we let ϕ⃗M be the presheaf where for any c ∈ obj(C),
ϕ⃗M(c) = {x ∈ (Sc)M ∶ M ⊧ ϕ(x)}. It is then clear that ϕ⃗M ⊆ S̈M.

Definition 3.6. We say Ë is an encoded subset of sort S̈ if it is a component
which contains:

● The encoded sort S̈.
● ⟨Ec ∶ c ∈ obj(C)⟩ where for each c ∈ obj(C), Ec is a relation of type Sc.

and which proves ThFor(⟨Ec ∶ c ∈ obj(C)⟩).

If Ë is realized as an encoded subset in M we use the shorthand ËM for ⟨Ec ∶
c ∈ obj(C)⟩M.

Let SSep be the collection of pairs, ⟨A0,A1⟩, of objects of Sep(C,JC) with A0 ⊆
A1. Now if we let Rep ∶ Mod(Ë) → SSep be such that Rep(M) = ⟨ËM, S̈M⟩ then

Rep is a ∆0-definable bijection. We call its inverse Enc. In this way we see that Ë
captures the notion of being a subpresheaf.

Our next component will capture being a morphism of presheves. Before we give
this component though, we will give the notion of an encoded term.

Definition 3.7. Suppose S̈ ∪ T̈ ⊆ L and suppose t⃗ = ⟨tc ∶ c ∈ obj(C)⟩ where for each
c ∈ obj(C), tc ∈ L∞,ω(L) is a term of type Sc → T c. We say t⃗ is an encoded term

(of type S̈ → T̈ ) in an structure if the structure satisfies the theory ThTer(t⃗) which
says:

● S̈, T̈ are encoded sorts.
● ⋀c∈obj(C)(∀x ∶ Sc)⋀g∈C[d,c] t

d ○ Sg(x) = T g ○ tc(x).

If t⃗ is an encoded term of type S̈ → T̈ in a structure M, then we let t⃗M be the
morphism of presheaves where for any c ∈ obj(C), and x ∈ S̈M, t⃗M(x) = y if and

only if M ⊧ tc(x) = y. It is then easily checked that t⃗M ∶ S̈M → T̈M is a map of
presheaves.

Definition 3.8. We say f̈ is an encoded function with domain S̈ and codomain
T̈ if it is a component which contains:

● Encoded sorts S̈ and T̈ .
● ⟨f c ∶ c ∈ obj(C)⟩ where each f c is a function symbol of type Sc → T c.

and which proves ThTer(⟨f c ∶ c ∈ obj(C)⟩).
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If f̈ is realized as an encoded function in M we use the shorthand f̈M for
⟨f c ∶ c ∈ obj(C)⟩M.

If Rep ∶ Mod(f̈) → mor(Sep(C,JC)) be such that Rep(M) = f̈M then Rep is a
∆0-definable bijection. We call its inverse Enc.

Now that we have defined three of the basic components, we will introduce a
shorthand which will greatly simplify our presentation. Suppose ψ is a sentence
of L∞,ω(L). Let ψc be the result of replacing in ψ each occurrence of a sort S
with a sort Sc, each occurrence of a relation symbols E by a relation Ec and each
occurrence of a function symbol f by a function symbol f c. Further let ψ̂ be the
result of (formally) replacing each occurrence of a sort S with the encoded sort S̈,

each occurrence of a relation E by an encoded subset Ë and each occurrence of a
function symbol f by an encoded function f̈ . We then use ψ̂ as a shorthand for

⋀c∈obj(C) ψ
c.

3.1.2. Covers. Suppose S̈ is an encoded sort and Ë0 and Ë1 are encoded subsets
of S̈. In this section we will define the component which say that Ë1 is the closure
of Ë0 in S̈. We will do this by adding an (encoding of an) initial segment of
the ordinals to our theory and then adding structure which allows us to iterate
aα(Ë0) ∩ S̈ through these ordinals. In order to do this we will (in general) need
our structure to contain all ordinals less than or equal to ∣JC ∣+ + 1, and this can
only be expressed in L∣JC ∣++,ω and not in L∣JC ∣+,ω. As such it will important to

define the ordinals in such a way that if we happen to have aα(Ë0) ∩ S̈ = Ë1 with
α < ∣JC ∣+, then our encoded models will not be saddled with unnecessary, overly
complex, structure coming from lager ordinals than are necessary.

We first define (our encoding of) the ordinals.

Definition 3.9. We say Öγ is an encoding of ordinals (up to γ + 2) if it is a
component which contains:

● A sort O.
● Constants {̂i ∶ i ≤ γ + 1} ∪ {∞̂, ∞̂−1} of sort O
● A relation ≤ of type ⟨O,O⟩.

and which proves:

● ≤ is a linear order.
● ∞̂−1 is the predecessor of ∞̂.
● (∀x ∶ O)⋁i≤γ+1 x = î.
● If i ≤ j ≤ γ + 1 then î ≤ ĵ.
● If i ≤ j ≤ k ≤ γ + 1 then î = ĵ → î = k̂.

We will abuse notation in what follows and treat O as an encoded sort where
Oc = O for all c ∈ obj(C) and Of = idO for all f ∈ C[c, d]. Unlike other components
of which a model may have many different copies, we will require that any structure
which realizes this component realizes it only once. Further we will assume that
all such structures realizes it with the (exact) same sort O and the same relation ≤
(although they may realize it with different constants).

The following lemma is then easily checked.

Lemma 3.10. If γ0 < γ1 then

● Lan[Öγ0] ⊆ Lan[Öγ1]
● ⊢ Th[Öγ0] → Th[Öγ1].
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● Every model of Öγ0 has a unique expansion to a model of Öγ1 .

Note the expansion of a model of Öγ0 to Öγ1 simply sets î = γ̂0 + 1 for all γ0 < i.

Definition 3.11. Suppose M ⊧ Öγ . We define the height of M to be the order
type of (OM,≤M).

Let Lim(x) ∶= (∀β ∶ O)β < x→ (∃γ ∶ O)β < γ < x. Lim(x) is a Σ1 formula of type
O which holds if and only if there is no largest element less than x. The purpose
of having the ordinals is to allow us to give the following (inductive) definition.

Definition 3.12. We say
....

Covγ(Ë0, Ë1) is a (γ-)witness to E⃗0 covering E⃗1 if it
is a component which contains:

● An encoding of ordinals up to γ, Öγ .

● Encoded subsets Ë0, Ë1 of type S̈.
● An encoded subset Ẅ of type S̈ ×O.

and which proves

(1) (∀x ∶ S̈)Ë0(x) ↔ Ẅ (x, 0̂).

(2) (∀x ∶ S̈)Ë1(x) ↔ Ẅ (x, ∞̂).

(3) (∀x ∶ S̈)(∀α ∶ O)Lim(α) → [Ẅ (x,α) ↔ (∃β ∶ O)β < α ∧ Ẅ (x,β)].
(4) ⋀c∈obj(C)(∀x ∶ Sc)(∀α ∶ O)¬Lim(α) → [W c(x,α) ↔ ⋁I∈JC(c)⋀g∈I(c)(∃β ∶

O)β < α ∧W dom(g)(Sg(x), β).

(5) (∀x ∶ S̈)Ẅ (x, ∞̂) ↔ Ẅ (x, ∞̂−1).

Now an important point to realize is that the witnesses are, more or less, absolute.

Lemma 3.13. Suppose M is an Lan[
....

Covγ(Ë0, Ë1)]-structure. Then the following
are equivalent:

●
....

Covγ(Ë0, Ë1) is a γ-witness to Ë0 covering Ë1.

● For each β ≤ γ + 1, {x ∶ (x, β̂) ∈ ẄM} = aβ(ËM0 ) ∩ S̈M.

Proof. This is an easy induction on β, given Definition 3.12 (1), (3) and (4). �

Further we have

Lemma 3.14. SupposeM realizes
....

Covγ(Ë0, Ë1) is a γ-witness to Ë0 covering Ë1.

Then Ë1
M = a(Ë0

M) ∩ S̈M.

Proof. Suppose M ⊧ ∞̂−1 = α̂. We have by Definition 3.12 (5) and Lemma 3.13

that aα(Ë0
M) ∩ S̈M = aα+1(Ë0

M) ∩ S̈M. The result follows from Definition 3.12
(2).

�

In this way having
....

Covγ(Ë0, Ë1) be a (γ)-witness to Ë0 covering Ë1 does in fact

capture the fact that Ë0 covers Ë1 in S̈. Further Lemma 3.13 shows that in this case
Ẅ is completely determined and the exact nature of the ordinals is unimportant,
so long as there are enough of them. In particular the following corollary follows
immediately from Lemma 3.13.

Corollary 3.15. Suppose

● γ0 < γ1.

●
....

Covγ0(Ë0, Ë1) is a γ0-witness that Ë0 covers Ë1 that is realized in M0.
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●
....

Covγ1(Ë0, Ë1) is a γ1-witness that Ë0 covers Ë1 that is realized in M1.

● S̈M0 = S̈M1 and ËM0

0 = ËM1

0 .

Then

● For all x ∈ S̈M0 and all β ≤ γ0+1, (x, β̂) ∈ ẄM0 if and only if (x, β̂) ∈ ẄM1 .

● For all γ0 ≤ β ≤ γ1 + 1, M1 ⊧ (∀x ∶ S̈)Ẅ (x, β̂) ↔ Ë1(x).

However not only is Ẅ -completely determined, but the following two corollaries
show that it is provably completely determined.

Corollary 3.16. Suppose

T0 ∶=
....

Covγ(Ë0, Ë1)[Ẅ0/Ẅ ] and T1 ∶=
....

Covγ(Ë0, Ë1)[Ẅ1/Ẅ ],
i.e. T0, T1 are

....
Covγ(Ë0, Ë1) with Ẅ0, Ẅ1 substituted in for Ẅ (respectively). We

then have

(∗) ⊢ T0 ∧ T1 → [(∀x ∶ S̈)(∀α ∶ O)Ẅ0(x,α) ↔ Ẅ1(x,α)]
Proof. First notice that if γ is countable and ∣JC ∣ = ω, then (∗) ∈ Lω1,ω(L) (for

an appropriate language L). But by Lemma 3.13 (∀x ∶ S̈)(∀α ∶ O)Ẅ0(x,α) ↔
Ẅ1(x,α) is true in all structures which satisfy T0 ∧T1. Hence, by the completeness
theorem for Lω1,ω(L) we have that there is a proof of (∗).

Now if we have (∗) /∈ Lω1,ω(L), then there is some forcing extension Set[G] of

Set where (T0 ∧ T1 ∈ Lω1,ω(L))Set[G]. But being a γ-witness that Ë0 covers Ë1

is absolute and so by the previous paragraph we have there is a proof of (∗) in
Set[G]. But the existence of a proof is absolute and hence there must be a proof
of (∗) in Set.

�

Corollary 3.16 tells us that the witness predicate Ẅ is provably completely de-
termined by Ë0, S̈ and the ordinals. In particular this gives justification for not

mentioning Ẅ as a parameter in the component
....

Covγ(Ë0, Ë1)

Corollary 3.17. If γ0 < γ1 then ⊢
....

Covγ0(Ë0, Ë1) →
....

Covγ1(Ë0, Ë1)
Proof. This follows immediately from Lemma 3.10. �

As the exact nature of the ordinals in our structures will be unimportant we will
often want to talk about when two structures minus their ordinals are the same.
We therefore have the following definition.

Definition 3.18. Suppose Öγ ⊆ L. Let L′ be the language where SL′ = SL−{S ∶ O ∈
tc({S})}, FL′ = {f ∈ FL ∶ dom(f), cod(f) ∈ SL′}, and RL′ = {R ∈ RL ∶ dom(R) ∈ SL′}.
We then say two L-structures M,N are equivalent without ordinals, written
M≎N , if M∣L′ = N ∣L′ .

It is worth mentioning that the only components which will make use of the
ordinals are covers (and components which use covers).

As a consequence we have that we can find an extension which has a γ-witness
to Ë0 covering Ë1 if and only if Ë0 actually covers Ë1.

Corollary 3.19. Suppose S̈, Ë0, Ë1 ⊆ L and O /∈ L. We then have the following
are equivalent for an L-structure M:

(1) a(ËM0 ) ∩ S̈M = ËM1 .
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(2) For some γ there is an extension Mγ of M to an L∪ Lan[
....

Covγ(Ë0, Ë1)]-
structure such that Mγ ⊧

....
Covγ(Ë0, Ë1).

(3) Up to isomorphism there is a unique extensionM∣JC ∣+ ofM to L∪Lan[
....

Cov∣JC ∣+(Ë0, Ë1)]-
structure such that M∣JC ∣+ ⊧

....
Cov∣JC ∣+(Ë0, Ë1).

Proof. The equivalence of (1) and (2) follows immediately from Lemma 3.14 and
the equivalence of (2) and (3) follows from Proposition 2.11 and Lemma 3.13. �

Another easy but important consequence of Lemma 3.13 is the following.

Corollary 3.20. Suppose

● M ⊆ N is a substructure.
● N ⊧

....
Covγ(Ë0, Ë1).

Then for all α ≤ γ + 1, {x ∶ M ⊧ Ẅ (x, α̂)} = {x ∶ N ⊧ Ẅ (x, α̂)} ∩ S̈M.

Proof. By Lemma 3.13 we have {x ∶ (x, β̂) ∈ ẄM} = aβ(ËM0 )∩S̈M and {x ∶ (x, β̂) ∈
ẄN } = aβ(ËN0 ) ∩ S̈N . The result then follows from Lemma 2.9 and the fact that

ËM0 = ËN0 ∩ S̈M.
�

3.1.3. Sieves and Subobjects. In this section we show how to encode maps from
an encoded sort S̈ to the subobject classifier. Our method will be first to define
an encoded sort C̈ with a constant f̂ of sort Cdom(f) for every f ∈ mor(C). We
then define an encoded sieve on c ∈ obj(C) to be a relation of type Cc which
satisfies a specific theory. An encoded subobject will then be an encoded subset
R̈ of S̈ × C̈ where for all x ∈ S̈, {f ∈ C̈ ∶ R̈(x, f)} is a closed sieve and the map

x↦ {f ∈ C̈ ∶ R̈(x, f)} is the desired map from S̈ to Ω which is encoded by R̈.

Definition 3.21. We say C̈ is an encoding of the morphisms of C if it is a
component which contains:

● An encoded sort C̈.
● For each c ∈ obj(C), a set {ĝ ∶ g ∈ C[−, c]} of constants of sort Cc.

and which proves ThCSi(c)(Cc) which says

● For each c ∈ obj(C) and all g0, g1 ∈ C[−, c] with g0 ≠ g1 we have ĝ0 ≠ ĝ1.
● For each c ∈ obj(C), (∀x ∶ Cc)⋁g∈C[−,c] x = ĝ.
● If g1 ∈ C[c, d0], h1 ∈ C[c, d1] is the pullback of g0 ∈ C[d0, e], h0 ∈ C[d1, e]

then Cg0(ĥ0) = ĝ1.

Like the encoding of ordinals, while the encoding of morphisms of C can be
realized in any structure, we require that it be realized at most once and that when
it is realized it is always realized by the same language (in all structures).

Definition 3.22. We say Ïc is an encoded closed sieve on c if it is a component
which contains:

● C̈, the encoding of morphisms of C.
● A relation I of sort Cc.

and which proves:

(1) ⋀h∈C[d,c],g∈C[e,d] I(ĥ) → I(ĥ ○ g).

(2) ⋀h∈C[d,c][⋁K∈JC(d)⋀g∈K I(ĝ ○ h)] → I(ĥ).
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Suppose C̈ ⊆ L and ψ(⋅) ∈ L∞,ω(L) is a formula of sort Cc. IfM is an L-structure
then we define ≀ψ(⋅)≀M ∶= {g ∶ M ⊧ ψ(ĝ)} ⊆ C[−, c].

Lemma 3.23. Suppose M is an Lan[Ïc]-structure. Then the following are equiv-
alent

(1) M⊧ Ïc.
(2) ≀I(⋅)≀M is a closed sieve on c.

Proof. That (2) implies (1) is immediate from Definition 3.22. Further notice that

by Definition 3.22 (1), if M⊧ Ïc then ≀I(⋅)≀M is a sieve.

Now to get a contradiction assume there is an M such that M⊧ Ïc but ≀I(⋅)≀M
is not closed, i.e. for some g ∈ C[d, c], g∗(≀I(⋅)≀M) ∈ JORD

C (d) but g /∈ ≀I(⋅)≀M. Let
α be the level of g∗(≀I(⋅)≀M). Without loss of generality we can assume that α is
minimal such that these conditions hold.

Now if the level of g∗(≀I(⋅)≀M) is 0, then by Definition 3.22 (2) we have g ∈ ≀I(⋅)≀M
and hence we can assume α > 0. In particular, we can assume that there is a sieve
K ∈ JC(d) such that for every f ∈ K, f∗(g∗(≀I(⋅)≀M)) ∈ JORD

C (dom(f)) and has
level strictly less than α. But by our inductive assumption this implies for each
f ∈ K that g ○ f ∈ ≀I(⋅)≀M. Then by Definition 3.22 (2) we have g ∈ ≀I(⋅)≀M
contradicting our assumption.

Hence whenever M⊧ Ïc we have ≀I(⋅)≀M is closed and (1) implies (2).
�

Lemma 3.23 shows that Ïc captures what we mean by a closed sieve on c.

Definition 3.24. We say
....
θ is an encoded subobject of sort S̈ if it is a com-

ponent which contains

● C̈, an encoding of the morphisms of C.
● An encoded sort S̈.
● An encoded subset θ̈ of type S̈ × C̈.

and which proves for each c ∈ obj(C):

(1) (∀y ∶ Sc)Th[Ïc][θc(y, x)/I(x)].
(2) ⋀f∈C[d,c](∀x ∶ Sc)⋀g∈C[e,d] θ

c(x, f̂ ○ g) ↔ θd(Sf(x), ĝ).

We now want to show that being an encoded subobject captures the notion of
being a map to the subobject classifier. Suppose M is an Lan[

....
θ ]-structure and....

θ is an encoded subobject realized in M. Then let Rep(M) be such that for
x ∈ (Sc)M, Rep(M)(x) = ≀θ(x, ⋅)≀M.

Lemma 3.25. The following are equivalent for a Lan[
....
θ ]-structure M:

(1)
....
θ is an encoded subobject of sort S̈ realized in M.

(2) Rep(M) is a map of presheaves from S̈M to Ω.

Proof. That (2) implies (1) is immediate from the definition. To see (1) implies

(2) notice that if
....
θ is an encoded subobject of sort S̈ then Lemma 3.23 tells us

that Rep(M) is a function from ⋃c∈obj(C) S̈M(c) to ⋃c∈obj(C) Ω(c). But Defini-
tion 3.24 (2) is satisfied if and only if for each f ∈ C[c, d] and x ∈ Sc we have
Rep(M)(Sf(x)) = f∗(Rep(M)(x)), i.e. if Rep(M) is a map of presheaves.

�
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Now notice that as Ω is a sheaf, the map ι restricts to a bijection between the
categories Sep(C,JC)[−,Ω] and Sh(C,JC)[−,Ω]. Hence by Lemma 3.25 we have
that if Rep ∶ Mod(

....
θ ) → Sep(C,JC)[−,Ω] then q○ι○Rep is a ∆0-definable bijection

between Mod(
....
θ ) and Sh(C,JC)[−,Ω]. We call the inverse to q ○ ι ○Rep, Enc. We

will use
....
θ
M

as a shorthand for ι ○Rep(M∣....θ ).

3.1.4. Partial Connectives: A Non-Component. In this section we introduce the
one piece which is not a component, i.e. which will not itself be an explicit subset
of our encoded structures. Specifically we discuss what it means for a collection of
formulas to encode a subset of Ω and for a collection of formulas to encode a partial
connective.

Definition 3.26. Let LanSO be the language which contains:

● C̈, an encoding of morphisms of C.
● For each c ∈ obj(C) a relation Xc of sort Cc.

Suppose ˙SO(ϕ) = ⟨ϕc ∶ c ∈ obj(C)⟩ where for each c ∈ obj(C), ϕc ∈ Lκ+,ω({Xc}) is

a quantifier free sentence. We say ˙SO(ϕ) is a definable subset of Ω (of complexity
κ) if the following holds:

(1) ⊢ ϕc → [Xc is an encoded closed sieve].
(2) ⊢ ⋀f∈C[d,c] [⋀g∈C[e,d]X

d(ĝ) ↔Xc(f̂ ○ g)] → [ϕc → ϕd].
We say that ˙SO(ϕ)∗ defines the function ˙SO(ϕ)∗(c) ∶= {≀Xc(⋅)≀M ∶ M ⊧ ϕc}.

Definition 3.26 (2) says ifM is an {Xc,Xd}∪C̈-structureM and f∗(≀Xc(⋅)≀M) =
≀Xd(⋅)≀M then ≀Xd(⋅)≀M is in our definable subset whenever ≀Xc(⋅)≀M is.

Lemma 3.27. If ˙SO(ϕ) is a definable subset of Ω then ˙SO(ϕ)∗ is a subpresheaf of
Ω.

Proof. That ˙SO(ϕ)∗(c) ⊆ Ω(c) for each c ∈ obj(C) follows immediately from Def-

inition 3.26 (1) that ˙SO(ϕ)∗ is a subpresheaf follows immediately from Definition
3.26 (2). �

It turns out that every subset of Ω is definable with some complexity.

Lemma 3.28. For every Z ⊆ Ω there is a definable subset ˙SO(ϕ) of complexity at

most 2∣mor(C)∣ with ˙SO(ϕ)∗ = Z.

Proof. For I a closed sieve on c, let ηI ∶= ⋀f∈I Xc(f̂) ∧ ⋀f/∈I ¬Xc(f̂). Then let
ϕc ∶= ⋁I∈Z(c) ηI ∧⋀I/∈Z(c) ¬ηI .

�

An example of a definable subset of Ω of complexity ∣JC ∣ is ThCSi ∶= ⟨ThCSi(c)(Xc) ∶
c ∈ obj(C)⟩. It is clear that Th∗CSi = Ω and we say that a definable subset ˙SO(ϕ) of
Ω is total if ⊢ ⋀c∈obj(C) ϕ

c ↔ ThCSi(c)(Xc).
Note that being a definable subset of Ω is an absolute property (i.e. is true in

all models of set theory). However, having ˙SO(ϕ)∗ = Ω is not in general absolute.

We can think of being total as an absolute analog of having ˙SO(ϕ)∗ = Ω.
The following lemma is also immediate.

Lemma 3.29. If V0 ⊆ V1 are models of ZFC and ˙SO(ϕ) is a definable subset of Ω,

then ( ˙SO(ϕ)∗)V0 = ( ˙SO(ϕ)∗)V1 ∩ΩV0 .
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We now show how to define partial connectives.

Definition 3.30. Let LancCon(n) be the language which contains the sort Cc and

for each c ∈ obj(C) relations Y c1 , . . . , Y
c
n of sort Cc.

Suppose ˙SO(ϕ) is a definable subset of Ω (of complexity κ) and ˙Con(ψ) = ⟨ψc ∶
c ∈ obj(C)⟩ where for each c ∈ obj(C), ψc(y) ∈ Lκ+,ω(LancCon(n)) is a quantifier free

formula of sort Cc. We say ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ is a definable partial connective
(of complexity κ) if the following holds:

(1) For each c ∈ obj(C), ⊢ ⋀i≤n ϕc[Y ci (x)/Xc(x)] → ϕc[ψc(x)/Xc(x)].
(2) For each c, d ∈ obj(C) and f ∈ C[d, c],

⊢
⎡⎢⎢⎢⎢⎣
⋀
i≤n

⎡⎢⎢⎢⎢⎣
⋀

g∈C[e,d]
Y di (ĝ) ↔ Y ci (f̂ ○ g)

⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎣
⋀

g∈C[e,d]
ψd(ĝ) ↔ ψc(f̂ ○ g)

⎤⎥⎥⎥⎥⎦
.

Let ˙Con(ψ)∗ ∶ ( ˙SO(ϕ)∗)n → ˙SO(ϕ)∗ be such that ˙Con(ψ)∗(I1, . . . , In) = I∗ if and
only if (for some c ∈ obj(C)) there is a LancCon(n)-structure M with ≀Yi(⋅)≀M = Ii
for each i ≤ n and ≀ψc(⋅)≀M = I∗. We say that ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ defines the pair

⟨ ˙SO(ϕ)∗, ˙Con(ψ)∗⟩.
Definition 3.30 (2) says that for f ∈ C[d, f] and an LancCon(n) ∪ LandCon(n)-

structureM, if for each i ≤ n, f∗(≀Y ci (⋅)≀M) = ≀Y di (⋅)≀M then we also have f∗(≀ψc(⋅)≀M) =
≀ψd(⋅)≀M.

Lemma 3.31. If ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ is a definable partial connective then ˙Con(ψ)∗
restricts to a map of presheaves from [ ˙SO(ϕ)∗]n to ˙SO(ϕ)∗.

Proof. That the image of any tuple from ˙SO(ϕ)∗ is in ˙SO(ϕ)∗ follows from Def-

inition 3.30 (1). That ˙Con(ψ)∗ is a function follows from the fact that ψc ∈
L∞,ω(LancCon(n)) and hence if we have two structuresM,N which agree on LancCon(n)
then they must agree on ψc. Finally, that ˙Con(ψ)∗ is a map of presheaves follows
from Definition 3.30 (2). �

We call a definable partial connective ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ total if ˙SO(ϕ) is total.
We will sometimes refer to total definable partial connectives simply as definable
connectives. Definable connectives encode maps from Ωn to Ω (in any model of set
theory).

Lemma 3.32. Suppose X ⊆ Ω and β ∶ Xn → X is a partial connective. Then
there is a definable partial connective ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ of complexity at most ∣X ∣ ≤
2∣mor(C)∣ such that:

● ˙SO(ϕ)∗ =X.

● ˙Con(ψ)∗ restricted to Xn equals β.

Proof. First let ˙SO(ϕ) be as in Lemma 3.28. Next, for I a closed sieve on c,

let ηiI ∶= ⋀f∈I Y ci (f̂) ∧ ⋀f/∈I ¬Y ci (f̂). We then let ψc(x) ∶= ⋁I1,...,In∈X[[⋀i≤n ηiIi] →
⋁f∈β(I1,...,In) x = f̂]. �

The following lemma is also immediate.

Lemma 3.33. If V0 ⊆ V1 are models of ZFC and ⟨ ˙SO(ϕ), ˙Con(ψ)⟩ is a definable

partial connective. Then for any (x ∈ [ ˙SO(ϕ)n]∗)V0 , ( ˙Con(ψ)∗(x))V0 = ( ˙Con(ψ)∗(x))V1 .
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We now end with a few important example of definable connective of complexity
∣mor(C)∣.
Example 3.34. First recall that if A1,A2 are subpresheaves of a sheaf A then we
define A1 ⇒ A2 to be the subpresheaf where, for c ∈ obj(C), e ∈ A(c) if and only if

⋀f∈C[d,c]A(f)(e) ∈ A1(d) implies A(f)(e) ∈ A2(d).

Now if we interpret Ai as maps ai ∶ A → Ω and [a1 ⇒ a2] ∈ Sh∗(C,JC)[A,Ω]
then for e ∈ A(c), [a1 ⇒ a2](e) = {f ∈ C[−, c] ∶ (∀g ∈ C[−,dom(f)])f ○ g ∈ A1(c) →
f ○ g ∈ A2(c)}. Now let

⇒̂c(x) ∶= ⋀
f∈C[−,c]

⎡⎢⎢⎢⎢⎣
x = f̂ → ⋀

g∈C[−,dom(f)]
Y c1 (f̂ ○ g) → Y c2 (f̂ ○ g)

⎤⎥⎥⎥⎥⎦
.

It is then immediate that ⟨ThCSi, ⇒̂⟩ is a ∣mor(C)∣-definable connective which
defines the operation ⇒∶ Ω2 → Ω.

Example 3.35. Let

=̂c(x) ∶= ⋀
f∈C[−,c]

⎡⎢⎢⎢⎢⎣
x = f̂ → ⋀

g∈C[−,dom(f)]
Y1(f̂ ○ g) ↔ Y2(f̂ ○ g)

⎤⎥⎥⎥⎥⎦
.

It is then immediate that ⟨ThCSi, =̂⟩ is a ∣mor(C)∣-definable connective which
defines the operation =Ω∶ Ω2 → Ω.

Example 3.36. Suppose a ∶ 1→ Ω. Then we can define the connective

âc(x) = ⋀
f∈C[−,c]

⋁
f∈a(1)(c)

x = f̂ .

It is then immediate that ⟨ThCSi, â⟩ is a ∣mor(C)∣-definable connective which
defines the operation a ∶ 1→ Ω.

3.2. Model Components. In this section we show how to combine basic com-
ponents to encode sheaf models. We break this into four subsections. In Section
3.2.1 we deal with components associated to sorts, in Section 3.2.2 we deal with
components associated to functions and, in Section 3.2.3 we deal with components
associated to relations. Then, once we have defined all of these components we
combine them to define our encoding of sheaf models.

3.2.1. Sorts. First we give a component which pins down when a separated presheaf
is isomorphic (as a separated presheaf) to a given fixed separated presheaf.

Definition 3.37. Suppose A is a separated presheaf. We say ¨ConA(S̈A) encodes
A if it is a component which contains:

● An encoded sort S̈A.
● For each c ∈ obj(C) and a ∈ A(c) a constant â of sort ScA.

and which proves:

● For each c ∈ obj(C), (∀x ∶ ScA)⋁a∈A(c) x = â.

● For each c ∈ obj(C), ⋀a,a′∈A(c) â ≠ â′.
● For each g ∈ mor(C), ⋀a=A(g)(a′) S

g
A(â′) = â.

The following lemma is immediate.

Lemma 3.38. If S̈A is an encoded sort in a structureM, thenM has an expansion
which satisfies ¨ConA(S̈A) if and only if S̈MA is isomorphic to A (in Sep(C,JC)).
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We next define the component which encodes products in the category Sh∗(C,JC).

Definition 3.39. We say
....

Prod(S̈i ∶ i ≤ n) is an encoded product of the encoded

sorts S̈0, . . . , S̈n if it is a component which contains:

● Encoded sorts S̈i for i ≤ n.
● An encoded sort S̈∗.
● Encoded functions π̈i ∶ S̈∗ → S̈i for each i ≤ n.

and which proves:

● (∀x, y ∶ S̈∗)[⋀i≤n π̈i(x) = π̈i(y)] → x = y.

● (∀x1 ∶ S̈1)⋯(∀xn ∶ S̈n)(∃x ∶ S̈∗)⋀i≤n π̈i(x) = xi.

It is easy to see that
....

Prod(S̈i ∶ i ≤ n) is an encoded product in a structure M if

and only if ⟨S̈M∗ , ⟨π̈Mi ∶ i ≤ n⟩⟩ is a product of S̈M0 , . . . , S̈Mn in Sep(C,JC) if and only

if ⟨S̈M∗ , ⟨ι(π̈Mi ) ∶ i ≤ n⟩⟩ is the distinguished product of S̈M0 , . . . , S̈Mn in Sh∗(C,JC).

Definition 3.40. We say
....=S̈ is an encoding of equality on S̈ if it is a component

which contains:

● An encoded subset =̈S̈ of type S̈ × S̈.

and which proves:

● (∀x, y ∶ S̈)=̈S̈(x, y) ↔ x = y.

3.2.2. Functions.

Definition 3.41. We say
....
γf is an encoded morphism (of height γ) with domain

S̈ and codomain T̈ if it is a component which contains

● Encoded sorts S̈ and T̈ .
● Encoded subsets D̈f , D̈1 of type S̈.

● A (γ-)witness,
....

Covγ(D̈f , D̈1) to D̈f covering D̈1.

● An encoded subset f̈ of type S̈ × T̈ .

and which proves

● (∀x ∶ S̈)D̈1(x).

● (∀x ∶ S̈)D̈f(x) ↔ (∃y ∶ T̈ )f̈(x, y).

● (∀x ∶ S̈)(∀y, y′ ∶ T̈ )f̈(x, y) ∧ f̈(x, y′) → y = y′.

Let Rep ∶ ⋃γ∈ORD Mod(
....
γf) → mor(Sh∗(C,JC)) be such that when Rep(M) =

⟨f, df ⟩ then dom(⟨f, df ⟩) = S̈M = D̈1
M

, cod(⟨f, df ⟩) = T̈M, df = D̈Mf and f(x) = y
if and only if M⊧ f̈(x, y). We then immediately have the following lemma.

Lemma 3.42. Rep is a ∆0-definable surjection with Rep(M0) = Rep(M1) if and
only if M0 ≎M1.

We will use
....
γf
M

as a short hand for Rep(M∣....
γf ). We will also omit the subscript

representing the ordinals when it is clear from context. In particular if
....
f is an

encoded morphism, the corresponding encoded set which represents the graph of....
f will be f̈ .

Lemma 3.43. For every γ ∈ ORD andM ∈ Mod(
....
γf) there is anM∗ ∈ Mod(

....
∣JC ∣+f)

with
....
γf
M =

....
∣JC ∣+f

M∗

.
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Proof. This follow immediately from Corollary 3.19 and the fact that Rep(M) =
Rep(M∗) if and only if M≎M∗. �

In this way we see that
....

∣JC ∣+f really does capture the notion of being a morphism

in Sh∗(C,JC).

3.2.3. Relations.

Definition 3.44. Suppose S̈ is an encoded sort and suppose ϕ⃗ is an encoded formula
of type S̈. Let ThCFor(ϕ⃗) be the sentence which says:

● ⋀c∈obj(C)(∀x ∶ Sc)⋀I∈JC(c)[⋀g∈I ϕdom(g)(Sg(x)) → ϕc(x)].

It is then immediate that if Ë is an encoded subset of type S̈ in M then M ⊧
ThCFor(Ë) if and only if a1(ËM) ∩ S̈M = ËM ∩ S̈, i.e ËM is closed in S̈M. If an

encoded subset, Ë of S̈, satisfies ThCFor(Ë) then we say Ë is a encoded closed
subset.

Definition 3.45. We say
....
Rel(R̈s,

....
R ) is an encoded relation of type S̈ if it is a

component which contains:

● An encoded closed subset R̈s of type S̈.
● An encoded subobject

....
R of type S̈.

and which proves:

● ⋀c,d∈obj(C)⋀g∈C[d,c](∀x ∶ Sc)Rc(x, ĝ) ↔ Rds(Sg(x)).

The following is then immediate.

Lemma 3.46. Suppose in a structure M, S̈ is an encoded sort, R̈s is an encoded

subset of S̈ and
....
R is an encoded subobject of type S̈. Then M⊧

....
Rel(R̈s,

....
R ) if and

only if R̈Ms ⊆ S̈M is a pullback of ⊺ ∶ 1→ Ω along
....
R
M ∶ S̈ → Ω (in Sh∗(C, , JC)).

In particular the following is immediate from Lemma 2.15 and Lemma 3.25.

Corollary 3.47. Suppose S̈ is an encoded sort. Then

● For every structure M which realizes
....
R as an encoded subobject of type

S̈ there is a unique expansion of M to an Lan[
....
Rel(R̈s,

....
R )]-structure M∗

where M∗ ⊧
....
Rel(R̈s,

....
R ).

● For every structureM which realizes R̈s as an encoded closed subset of type

S̈ there is a unique expansion of M to an Lan[
....
Rel(R̈s,

....
R )]-structure M∗

where M∗ ⊧
....
Rel(R̈s,

....
R ).

3.2.4. Models. We are finally ready to define an encoding of a sheaf model.

Definition 3.48. Suppose L is a sheaf language. We say
....

Lanγ(L) is an encoding
of sheaf L-structures (of height γ) if it is a component which contains

● For every S ∈ SL an encoded sort S̈.
● For every f ∈ FL with domain S and codomain T an encoded morphism

....
γf

(of height γ) with domain S̈ and codomain T̈ .

● For every R ∈ RL of type S an encoded relation
....
Rel(R̈s,

....
R ) of type S̈.

● For each S ∈ SL an encoding of equality
....=S̈ on S̈.

● For each Sp = ⟨S1, . . . , Sn⟩ ∈ SL an encoded product
....

Prod(S̈i ∶ i ≤ n)[S̈p/S̈∗]
of S̈1, . . . , S̈n.
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● For each S ∈ OL an encoding of rL(S), ¨ConrL(S̈).

Let Rep ∶ ⋃γ∈ORD Mod(
....

Lanγ(L)) → L-Structures be such that when Rep(M) =
N then for all S ∈ SL, S̈M = SN , for all f ∈ FL,

....
γf
M = fN and for all R ∈ RL,

⟨R̈Ms ,
....
R
M⟩ = ⟨RNs ,RN ⟩. We then have

Lemma 3.49. The following hold:

(1) Rep is a ∆0-surjection.
(2) Rep(M0) = Rep(M1) if and only if M0 ≎M1.

(3) For each γ ∈ ORD and each M ∈ Mod(
....

Lanγ(L)) there is (up to isomor-

phism) a unique M∗ ∈ Mod(
....

Lan∣JC ∣+(L)) with Rep(M) = Rep(M∗).

Proof. (1) follows immediately from the analogous results for each component. (2)
follows from Lemma 3.42. (3) follows from (2) and Corollary 3.19. �

IfN is an L-structure with Rep(M) = N then we denote by Enc(N) ∈ Mod(
....

Lan∣JC ∣+(L))
the structure from Lemma 3.49 (3).

The next lemma follows immediately from Lemma 3.10.

Lemma 3.50. Suppose γ0 < γ1. Then

● Lan[
....

Lanγ0(L)] ⊆ Lan[
....

Lanγ1(L)].
● ⊢ Th[

....
Lanγ0(L)] → Th[

....
Lanγ1(L)].

●
....

Lanγ0(L) has complexity max{∣JC ∣, ∣γ0∣, ∣L∣}.

3.3. Formula and Sentence Components. In this section we show how to en-
code sentences. We do this by first showing in Section 3.3.1 how to encode when
a formula is named in a structure. Next in Section 3.3.2 we show how to encode
simple sentences. Lemma 2.41 then tell us that this is enough to encode arbitrary
sentences.

3.3.1. Formula Components. We begin showing how to characterize a map in Sh∗(C,JC)
as well as showing how to characterize various operations on morphisms.

Definition 3.51. Suppose A,B are separated presheaves and α = ⟨αf , dα⟩ ∈ Sh∗(C,JC)[A,B].
We say ⟪....

g ∶=γ α⟫ defines α (with height γ) if it is a component which contains:

● An encoding of A, ¨ConA(S̈A) and an encoding of B, ¨ConB(S̈B).

● An encoded morphism
....
g (of height γ) with domain S̈A and codomain S̈B

and which proves:

● ⋀c∈obj(C)⋀a∈dα(c)Dc
g(â) ∧ ⋀a/∈dα(c) ¬Dc

g(â).

● ⋀c∈obj(C)⋀a∈A(c),α(a)=b g
c(â, b̂).

The following lemma is then immediate.

Lemma 3.52. If M is a Lan[⟪....
g ∶=γ α⟫]-structure with âM = a for all a ∈ A and

b̂M = b for all b ∈ B then M⊧ ⟪....
g ∶=γ α⟫ if and only

....
g M = α.

In this way we have encoded the morphism α ∈ Sh∗(C,JC).
Definition 3.53. We say ⟪....

g ∶=γ
....
f 1 ○

....
f 0⟫ defines the composition (of height

γ) of
....
f 1 with

....
f 0 if it is a component which contains:

● Encoded morphism
....
f 0 ∶ S̈ → T̈ ,

....
f 1 ∶ T̈ → Ü and

....
g ∶ S̈ → Ü (of height γ).

and which proves:
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● (∀x ∶ S̈)D̈g(x) ↔ (∃y ∶ T̈ )D̈f1(y) ∧ f̈0(x, y).

● (∀x ∶ S̈)(∀z ∶ Ü)g̈(x, z) ↔ (∃y ∶ T̈ )f̈0(x, y) ∧ f̈1(y, z).

The following lemma is then immediate.

Lemma 3.54. Suppose
....
f 0 ∶ S̈ → T̈ ,

....
f 1 ∶ T̈ → Ü and

....
g ∶ S̈ → Ü are encoded

morphisms (of height γ) in M. Then M ⊧ ⟪....
g ∶=γ

....
f 1 ○

....
f 1⟫ if and only

....
g M =

....
f
M
1 ○

....
f
M
0 .

In this way ⟪....
g ∶=γ

....
f 1 ○

....
f 0⟫ captures composition of morphisms.

Definition 3.55. We say ⟪Ë1 ∶=γ
....
f
−1[F̈ ]⟫ defines the inverse image of F̈ by

....
f
−1

if it is a component which contains:

● An encoded morphism
....
f (of height γ) with domain S̈ and codomain T̈ .

● Encoded subsets Ë0, Ë1 of sort S̈.
● A closed encoded subset F̈ of sort T̈ .

●
....

Covγ(Ë0, Ë1), a γ-witness to E⃗0 covering E⃗1.

and which proves:

● (∀x ∶ S̈)Ë0(x) ↔ D̈f(x) ∧ (∃y ∶ T̈ )f̈(x, y) ∧ F̈ (y).

Lemma 3.56. If ⟪Ë1 ∶=γ
....
f
−1[F̈ ]⟫ defines the inverse image of F̈ by

....
f
−1

in M
then

(1) ËM1 is in the subobject of S̈M corresponding to the pullback of F̈M along
....
f
M

in Sh∗(C,JC).

(2) If M⊧
....
Rel(Ë1,

....
IE) and M⊧

....
Rel(F̈ ,

....
IF ,) then

....
IE
M

=
....
f
M ○

....
IF
M

.

Proof. To see (1) holds note ËM0 is the pullback of F̈M ∩ ran(fM) along fM in

Sep(C,JC). Then applying j ○ q to all maps and subobjects we see that j ○ q(ËM0 )
is in the subobject (j ○ q(

....
f
M))−1[j ○ q(ËM0 )], as j ○ q preserves pullbacks. But we

then also have by Lemma 3.14 that j ○ q(ËM0 ) = j ○ q(ËM1 ).
Finally (2) then follows immediately from (1) and Lemma 3.46. �

Definition 3.57. We say ⟪....
g ∶=γ ∏i≤n

....
f i⟫ defines the product of ⟨

....
f i ∶ i ≤ n⟩

if it is a component which contains:

● An encoded product
....

Prod(S̈i ∶ i ≤ n) (of height γ).

● Encoded morphisms
....
f i ∶ T̈ → S̈i (of height γ) for i ≤ n.

● An encoded morphism
....
g ∶ T̈ → S̈∗ (of height γ).

and which proves:

● (∀x ∶ T̈ )D̈g(x) ↔ ⋀i≤n D̈fi(x).

● (∀x ∶ S̈)g̈(x, y) ↔ ⋀i≤n f̈i(x,πi(y)).

We then easily have the following lemma.

Lemma 3.58. Suppose
....
g ∶ T̈ → S̈∗ and

....
f i ∶ T̈ → S̈i (i ≤ n) are encoded morphisms

(of height γ).

(1) If M ⊧ ⟪....
g ∶=γ ∏i≤n

....
f i⟫ then

....
g M is a product of ⟨

....
f
M
i ∶ i ≤ n⟩ (in

Sh∗(C,JC)).

(2) If
....

∣JC ∣+f i ∶ T̈ → S̈i are encoded morphisms realized in M, then there is
a unique expansion of M to M∗ which contain a new encoded morphism

....
∣JC ∣+g such that M⊧ ⟪....

g ∶=∣JC ∣+ ∏i≤n
....
f i⟫.
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Proof. (1) Follows immediately from the definition of products. (2) follows from
Corollary 3.19. �

We now show how to compose encoded subobjects with partial connectives.

Definition 3.59. Suppose ⟨X,β⟩ = ⟨ ˙SO(ϕ)β , ˙Con(ψ)β⟩ is a definable partial con-
nective in LanCon(n) and let ψc∗(x) = ψcβ[F ci (x, y)/Y ci (y)], ϕci(x) = ϕcβ[F ci (x, y)/Xc(y)]
i.e. the result of substituting F ci (x, y) in for Y ci (y) and Xc(y) everywhere.

We say ⟪
....
G ∶=X β ○ ⟨

....
F i ∶ i ≤ n⟩⟫ defines composition with β if it is a

component which contains:

● An encoded sort S̈.
● Encoded subobjects

....
G , {

....
F i ∶ i ≤ n} of type S̈.

and which proves:

(1) For all c ∈ obj(C), ⋀i≤n(∀x ∶ Sc)ϕci(x).
(2) For all c ∈ obj(C), (∀x ∶ Sc)⋀g∈C[−,c]

....
G (x, ĝ) ↔ ψc∗(x, ĝ).

Lemma 3.60. Suppose M realizes encoded subobjects
....
G , {

....
F i ∶ i ≤ n}. Then the

following are equivalent:

(a) M⊧ ⟪
....
G ∶=X β ○ ⟨

....
Fi ∶ i ≤ n⟩⟫.

(b) Both

(i) For each i ≤ n, ran(
....
Fi
M) ⊆ ˙SO(ϕ)∗β.

(ii)
....
G
M = ˙Con(ψ)∗β ○ [∏i≤n

....
Fi
M]

Proof. By Lemma 3.27 Definition 3.59 (1) and (b)(i) are equivalent in any encoded
model, and by Lemma 3.31 Definition 3.59 (2) and (b)(ii) are equivalent in any
encoded model.

�

Lemma 3.61. The complexity of Th[⟪
....
G ∶= βX ○ ⟨

....
F i ∶ i ≤ n⟩⟫] is max{complexity

of ˙SO(ϕ)β, complexity of ˙Con(ψ)β , ∣JC ∣}.

Now we show how to define quantifiers.

Definition 3.62. Let
....
Q γ be the component which is the union of the following:

● An encoded subset Ë of sort S̈.
● An encoded morphism

....
f from S̈ to T̈ (of height γ).

● Encoded sets F̈0, F̈ of sort T̈ .

● A γ-witness
....

Covγ(F̈0, F̈ )
We say ⟪F̈ ∶=γ (∀....

f )Ë⟫ defines universal quantification if it the component

which contains
....
Q γ and further proves:

● (∀y ∶ T̈ )F̈0(y) ↔ [(∀x ∶ S̈)f̈(x, y) → Ë(y)].
We say ⟪F̈ ∶=γ (∃....

f )Ë⟫ defines existential quantification if it is the com-

ponent which contains
....
Q γ and further proves:

● (∀y ∶ T̈ )F̈0(y) ↔ [(∃x ∶ S̈)f̈(x, y) ∧ Ë(y)].
The following lemma is then immediate.

Lemma 3.63. We have

(1a) IfM⊧ ⟪F̈ ∶=γ (∃....
f )Ë⟫ then F̈M is closed in S̈M and in the same subobject

as (∃....
f
M)ËM (in Sh∗(C,JC)).
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(1b) If M ⊧ ⟪F̈ ∶=γ (∀....
f )Ë⟫ then F̈M is closed and in the same subobject as

(∀....
f
M)ËM (in Sh∗(C,JC)).

(2) Suppose in M realizes Ë as an encoded closed subset of S̈ and
....
f ∶ S̈ → T̈

is an encoded morphism (of some height). Then there is an M0 such that
M0 ≎ M, the height of M0 is ∣JC ∣+ and M0 has an expansion M∗

0 which

realizes ⟪F̈ ∶=∣JC ∣+ (∃....
f )Ë⟫ and ⟪F̈ ∶=∣JC ∣+ (∀....

f )Ë⟫.

Proof. That (1a) and (1b) hold for any encoded model follows from the definition
of quantification and Lemma 3.14. That (2) holds follows from Corollary 3.19.

�

Lemma 3.64. We have the following for γ0 < γ1.

● ⊢ Th[⟪F̈ ∶=γ0 (∀....
f )Ë⟫] → Th[⟪F̈ ∶=γ1 (∀....

f )Ë⟫]
● ⊢ Th[⟪F̈ ∶=γ0 (∃....

f )Ë⟫] → Th[⟪F̈ ∶=γ1 (∃....
f )Ë⟫]

Proof. This follows immediately from Corollary 3.17 and the fact that the only
mention of the constants ζ̂ for ordinals ζ are in Th[Öγi]. .

�

We now show how to name conjunctions and disjunctions.

Definition 3.65. Let
....
B be the component which is the union of the following:

● An encoded sort S̈.
● Encoded closed subsets, F̈ and Ëi, i ∈ I, of sort S̈.

We let ⟪F̈ ∶= ⋀i∈I Ëi⟫ be the sort which contains
....
B and further proves:

● (∀x ∶ S̈)F̈ (x) ↔ ⋀i∈I Ëi(x)
We let ⟪F̈ ∶=γ ⋁i∈I Ëi⟫ be the sort which contains

....
B as well as:

● An encoded set F̈0 of sort S̈.

● A γ-witness that F̈0 covers F̈ ,
....

Covγ(F̈0, F̈ ).

and which proves:

● (∀x ∶ S̈)F̈0(x) ↔ ⋁i∈I Ëi(x)

The following lemma follows easily from the definition of infinite conjunctions
and disjunctions in Sh∗(C,JC).

Lemma 3.66. We have:

(1a) If M ⊧ ⟪F̈ ∶= ⋀i∈I Ëi⟫ then F̈M is in the same subobject as ⋀i∈I ËM (in
Sh∗(C,JC)).

(1b) If M⊧ ⟪F̈1 ∶=γ ⋁i∈I Ëi⟫ then F̈M is in the same subobject as ⋁i∈I ËM (in
Sh∗(C,JC)).

(2) Suppose M realizes Ëi are encoded closed subsets of S̈ (for i ∈ I) and M
does not contain any encoded ordinals. Then there is an expansion M∗ of
M which realizes ⟪F̈ ∶= ⋀i∈I Ëi⟫ and ⟪F̈ ∶=∣JC ∣+ ⋁i∈I Ëi⟫.

Proof. That (1a) and (1b) hold for any encoded model follows from the definition
of infinite conjunctions and disjunctions of subobjects in Sh∗(C,JC) and Lemma
3.14. That (2) holds follows from Corollary 3.19.

�

Lemma 3.67. We have the following for γ0 < γ1.
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● ⊢ Th[⟪F̈1 ∶=γ0 ⋁i∈I Ëi⟫] → Th[⟪F̈1 ∶=γ1 ⋁i∈I Ëi⟫]

Proof. This follows immediately from Corollary 3.17.
�

Now that we have all of these sentences which name formulas, we can say when
a fragment is named.

Definition 3.68. Suppose A is a fragment and NA = ⟨Hϕ ∶ ϕ ∈ A⟩ ⊆ FL ∪ RL − A
and let QA = ⟨Qβ ∶ β ○Xβ ∏i≤n fi ∈ A⟩ where Qβ = ⟨ϕβ , ψβ⟩ is a definable partial

connectives which defines ⟨Xβ , β⟩. Let
....

Namγ(A,NA,QA) be the component which
contains:

(0) For each A,B ∈ OL and α ∶ rL(A) → rL(B) in A, ⟪
....
Hα ∶=γ α⟫.

(1a) For each g ○ f ∈ A with cod(g) ∈ SL, ⟪
....
H g○f ∶=γ

....
H g ○

....
H f⟫.

(1b) For each g ○ f ∈ A with cod(g) = Ω then ⟪(Ḧg○f)s ∶=γ
....
f
−1[(Ḧf)s]⟫

(2) For each {fi ∶ i ≤ n} all with codomain in SL and with ∏i≤n fi ∈ A,
⟪
....
H∏i≤n fi ∶=γ ∏i≤n

....
H fi⟫.

(3) For each β ○Xβ ∏i≤n fi ∈ A, ⟪
....
H β○Xβ∏i≤n fi ∶= Qβ ○ ⟨

....
H fi ∶ i ≤ n⟩⟫.

(4) For each ⋁i∈I Ei ∈ A, ⟪(Ḧ⋁i∈I Ei)s ∶=γ ⋁i∈I(ḦEi)s⟫.

(5) For each ⋀i∈I Ei ∈ A, ⟪(Ḧ⋀i∈I Ei)s ∶= ⋀i∈I(ḦEi)s⟫
(6) For each (∀f)E ∈ A, ⟪(Ḧ(∀f )E)s ∶=γ (∀....

H f
)(ḦE)s⟫.

(7) For each (∃f)E ∈ A, ⟪(Ḧ(∃f )E)s ∶=γ (∃....
H f

)(ḦE)s⟫.

We then have the following theorem which sums up the the results of this section.

Theorem 3.69. Suppose A ⊆ Forκ+,ω(L) is a fragment each of whose formulas is
legal for a sheaf model M∗, M∗ = Rep(M), i.e. M∗ is a representation of M and
that NA and QA are as in Definition 3.68. Then the following hold:

(1) If M⊧
....

Namγ(A,NA,QA) then {Hϕ ∶ ϕ ∈ A} are names for A in M∗.
(2) If {Hϕ ∶ ϕ ∈ A} are names for A in M∗ then there is an M0 such that

M0 ≎M and M0 ⊧
....

Nam∣JC ∣+(A,NA,QA).

(3) ⊢ Th[
....

Namγ0(A,NA,QA)] → Th[
....

Namγ1(A,NA,QA)] if γ0 < γ1.

(4) The complexity of
....

Namγ(A,NA,QA) is at most the supremum of the set
{∣A∣, ∣γ∣, ∣JC ∣, the complexity of all Qβ in QA}.

Proof. (1) and (2) follow immediately from Lemma 3.52, Lemma 3.54, Lemma 3.56,
Lemma 3.58, Lemma 3.58, Lemma 3.63, Lemma 3.66. (3) follows from Corollary

3.17 and the fact that the only difference between
....

Namγ0(X) and
....

Namγ1(X) occur
on components which witness one encoded subset covering another. �

Theorem 3.69 is the most important of result of Section 3.3.1. It shows how we
can collect all of our encodings together to get names for all formulas in a fragment.

3.3.2. Sentence Components. We now show how to encode basic sentences. This,
along with the encoding of names, will allow us to encode arbitrary sheaf sentences.

Definition 3.70. We say ⟪
....
f 0 ≡γ

....
f 1⟫ defines the equivalence of

....
f 0 and

....
f 1

if it is a component which contains:

● Encoded morphisms
....
f 0 and

....
f 0 (of height γ) both of which have domain

S̈ and codomain T̈ .
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and which proves:

● (∀x ∶ S̈)(∀y ∶ T̈ )D̈f0(x) ∧ D̈f1(x) → [f̈0(x, y) ↔ f̈1(x, y)].

The following lemma is immediate.

Lemma 3.71. Suppose
....
f 0 and

....
f 1 are encoded morphisms (of height γ) from

S̈ to T̈ realized in M. Then M ⊧ ⟪
....
f 0 ≡γ

....
f 1⟫ if and only if

....
f
M
0 ≡

....
f
M
1 (as

morphisms in Sh∗(C,JC)).

Definition 3.72. We say ⟪
....
Rel(R̈0

s,
....
R

0) ≡
....
Rel(R̈1

s,
....
R

1)⟫ defines the equiva-

lence of
....
Rel(R̈0

s,
....
R

0) and
....
Rel(R̈1

s,
....
R

1) if it is a component which contains:

● Encoded relations
....
Rel(R̈0

s,
....
R

0) and
....
Rel(R̈1

s,
....
R

1) of type S̈.

and which proves:

● (∀x ∶ S̈)R̈0
s(x) ↔ R̈1

s(x).

The following lemma is immediate.

Lemma 3.73. Suppose
....
Rel(R̈0

s, R̈
0) and

....
Rel(R̈1

s, R̈
1) are encoded relations of type S̈

realized inM. ThenM⊧ ⟪
....
Rel(R̈0

s,
....
R

0) ≡
....
Rel(R̈1

s,
....
R

1)⟫ if and only if
....
R0
M

≡
....
R1
M

(as morphisms in Sh∗(C,JC)).

Definition 3.74. We then define the following by induction on simple sentences:

● For T ∈ Sen∞,ω(L) let ⟪¬̌T⟫ be the component which contains ⟪T⟫ and
which proves ¬Th[⟪T⟫].

● For {Ti ∶ i ∈ K} ⊆ Sen∞,ω(L) let ⟪⋁̌i∈KTi⟫ and ⟪⋀̌i∈KTi⟫ be components
which contain each ⟪Ti⟫ and where:

– ⟪⋁̌i∈KTi⟫ proves ⋁i∈K Th[⟪Ti⟫].
– ⟪⋀̌i∈KTi⟫ proves ⋀i∈K Th[⟪Ti⟫].

Lemma 3.75. If T is a simple sentence and M∗ is a sheaf structure with M∗ =
Rep(M), then M∗ ⊧ T if and only if M⊧ ⟪T⟫.

Proof. This is immediate from the Definition 3.74, Lemma 3.71 and Lemma 3.73.
�

Note that if T is not legal forM then we haveM /⊧ T andM /⊧ ¬T . In particular
we have restricted our attention here to simple sentences as simple sentences are
legal in all structures.

Definition 3.76. Suppose T ∈ Senκ+,ω(L) and we have the notation from Lemma

2.41 and Definition 3.68. Let
....
Senγ(T ) be the component which is the union of the

following components:

●
....

Namγ(P (T ),NT ,QP (T )).
● ⟪TNT ⟫.

Theorem 3.77. Suppose T ∈ Senκ+,ω(L) is legal for M∗. Then the following hold:

(1) If Rep(M) =M∗ and M⊧
....
Senγ(T ) then M∗ ⊧ T .

(2) If M∗ ⊧ T then there is an expansion M∗
0 of M∗ with everything in P (T )

and an M0 such that Rep(M0) =M∗
0 and M∗

0 ⊧
....
Sen∣JC ∣+(T ).

(3) ⊢ Th[
....
Senγ0(T )] → Th[

....
Senγ1(T )] if γ0 < γ1.
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(4) The complexity of
....
Senγ(T ) is at most the supremum of {tc(T ), ∣γ∣, ∣JC ∣, the

complexity of all Qβ ∈ QP (T )}.

Proof. (1) and (2) follows from Lemma 2.41 and Corollary 3.19, Theorem 3.69 and
Lemma 3.75. (3) and (4) then follow from Theorem 3.69 (3) and (4).

�

4. Applications

In this section we will use our knowledge about models of L∞,ω in Set along
with the encodings from Section 3 to deduce facts about sheaf models and sheaf
sentences.

4.1. Elementary Chains. As an example of the strength of our encoding we
provide a proof of the directed embedding theorem. We will deduce this from the
corresponding result for Set-structures.

Theorem 4.1 (Directed Embedding Theorem). Let A ⊆ Forκ+,ω(L) be a fragment
and suppose ⟨I,⪯⟩ is a partial order such that every pair of elements has an upper
bound. Further suppose D = ⟨{Mi ∶ i ∈ I},{αi,j ∶ Mi → Mj , i ⪯ j}⟩ is a directed
system of sheaf models such that each formula in A is valid for each Mi and each
αi,j preserves all formulas in A. Then D has a directed limit ⟨M+, ⟨αi ∶ Mi →
M+, i ∈ I⟩⟩ where:

(1) Each each ϕ ∈ A is valid for M+ and each αi preserves all ϕ ∈ A.
(2) Suppose T ∈ Sen∞,ω(L) is such that Mi ⊧ T for all i ∈ I and P (T ) ⊆ A.

Then M+ ⊧ T .
(3) ⋃S∈SL ∣SM+ ∣ + ∣L∣ = ⋃i∈I ⋃S∈SL ∣SMi ∣ + ∣L∣

Proof. First note that by Proposition 2.27 and the fact that (1) and (2) are closed
under isomorphisms of directed diagrams it suffices to restrict attention to total
directed systems with total directed limits.

To see (1) holds note from Lemma 2.37 that if MA
i is an expansion of Mi by

(only) adding names for all formulas in A (in the same way) then DA = ⟨{MA
i ∶ i ∈

I},{αi,j ∶ i ⪯ j}⟩ is a directed system as well. Let M∗
+ be the directed limit of this

system. We then have by Lemma 2.37 that ifM∗
+ =MA

+ than each αi preserves all
formulas in A.

Notice though that as we can assume all maps αi,j are total we also have that

⟨{Enc(MA
i ) ∶ i ∈ I},{Enc(αi,j) ∶ i ⪯ j}⟩ is a directed system of

....
Lanγ(L)-structures

and Enc(M∗
+) is its directed limit.

But by Theorem 3.69 we have that Enc(MA
i ) ⊧ Th[

....
Nam∣JC ∣+(A)] for each i ∈ I

and that Th[
....

Nam∣JC ∣+(A)] is Π2. Hence because in Set-structures Π2-sentences

are preserved by directed limits, Enc(M∗
+) ⊧ Th[

....
Nam∣JC ∣+(A)] and so by Theorem

3.69 that M∗
+ =MA

+ (i.e. M∗
+ has names for each formula in A which corresponds

to the names in each Mi).
To see that (2) holds it suffices to show, by Lemma 2.41, Lemma 2.37 and the

previous paragraph, that (2) holds for simple sentences in DA. But if T is a simple
sentence then Th[⟪T⟫] is Π2 (by Definition 3.70, Definition 3.72 and Definition
3.74).

�
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4.2. Downward Löwenheim-Skolem Theorem. We now prove an analog of the
downward Löwenheim-Skolem Theorem.

Theorem 4.2 (Generated Downward Löwenheim-Skolem Theorem). Suppose A ⊆
Forκ+,ω(L) ∪ Senκ+,ω(L) is a fragment and QA is as in Definition 3.68. Further
suppose ∣A∣, ∣JC ∣, ∣L∣ ≤ κ and all definable partial connectives in QA have complexity
at most κ.

If M is an L-structure and Y ⊆ ⋃S∈SL SM is of size ≤ κ then there is an L-
structure NY such that:

(1) Y ⊆ NY ⊆M and NY is at most κ-generated,.
(2) The inclusion map in ∶ NY →M preserves all formulas in A.
(3) For any sentence T ∈ A valid for M, M⊧ T if and only if NY ⊧ T .

Proof. By Lemma 2.37 and Lemma 2.41 in order to show (2) and (3) it suffices
to assume all sentences of A are named in M and then to find NY for which the
theorem holds for simple sentences and where for each ϕ ∈ A if Hϕ is a name for ϕ
in M it is also a name for ϕ in NY .

Let M∗ be an encoding of M and let V ≺n Set be a substructure such that
{tc({Y,L,A}),M,M∗} ∈ V and ∣V ∣ = κ. Let i ∶ V → V0 be the transitive collapse of
V and let N ∗ = i(M∗). We then have i−1

∗ ∶ i(N ∗) → M∗ is a homomorhpism and
we can let NY = Rep(ran(i−1

∗ )).
Note that if T ∈ A then as V0 is a (Σn-)elementary substructure of Set we have

M ⊧ T if and only if i(M) ⊧ T (as i(T ) = T ) if and only if i(M∗) ⊧ ⟪T⟫ if and
only if NY ⊧ T .

Next note that, by our assumption in the first paragraph, we have M∗ ⊧....
Nam∣JC ∣+(A). Hence as tc(A) ∈ V we also have N ∗ ⊧ i(

....
Nam∣JC ∣+(A)). But

i(
....

Nam∣JC ∣+(A)) =
....

Nami(∣JC ∣+)(A) and so by Theorem 3.69 (3) we have N ∗ ⊧
....

Nam∣JC ∣+(A) as well (as i(∣JC ∣+) ≤ ∣JC ∣+). Hence if Hϕ is a name for ϕ in M,
Hϕ is also a name for ϕ in NY and so the inclusion map preserves ϕ.

All that is left is to show (1). But clearly Y ⊆ NY and, as ∣V ∣ = κ we have NY
must be κ-generated.

�

We now have a similar result for pure size, provided we have some condition on
the cardinality.

Corollary 4.3 (Pure Downward Löwenheim-Skolem Theorem). If κ∣mor(C)∣ = κ
then we can assume NY in Theorem 4.2 has pure size at most κ.

Proof. This follows immediately from Lemma 2.18.
�

Note that in general we cannot do away with the assumption in Corollary 4.3.
For example if (C,JC) is as in Example 2.19 and L has a single sort S, if Y ⊆ SM(c)
with ∣Y ∣ = κ then any substructure NY ⊆M has pure size at least κ∣mor(C)∣.

4.3. Completeness. We now turn our attention to countable weak sites and sen-
tences of Lω1,ω. In particular we show that there is a completeness theorem in this
context.

Definition 4.4. We say a sentence T is κ-valid if whenever T is legal for M and
M has height at most κ, then M⊧ T . We say T is valid if it is κ-valid for all κ.
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For the rest of this section suppose V0 ⊆ V1 are transitive models of set theory
with the same ordinals such that A ∈ V0 is a fragment.

Definition 4.5. Suppose T ∈ Sen∞,ω(L). We define a proof up to α of T to be
a proof of:

● Prα(T ) ∶= [
....

Lanα(L) ∧
....

Namα(P (T ),NT ,QP (T ))] → ⟪TNT ⟫.

In what follows it will be useful to have a notion of how complicated a sentence
is to express. We define the complexity of T ∈ Senκ+,ω(L) to be the complexity of
Pr∣JC ∣+(T ).

We then have the following

Lemma 4.6. If T ∈ Sen∞,ω(L) then the following are equivalent:

(0) T has a proof up to α for all α ∈ ORD.
(1) T has a proof up to α for all α < (complexity of T )+.
(2) T has a proof up to α for some α ≥ (complexity of T )+.

Proof. Notice that (0) immediately implies (1). Next suppose (0) doesn’t hold. In
particular suppose that there is no proof of T up to α for some α ∈ ORD. Now for
any particular α having a proof up to α (of T ) is absolute (as it is just a matter of
having a proof of a sentence of L∞,ω, which is an absolute property of a sentence).

Let V ≺1 Set with {α, tc({T,P (T ), (C,JC),L})} ∈ V and ∣V ∣ = (complexity of
T ). Let i ∶ V → V0 be the transitive collapsing map. Then in V0, i(T ) = T does not
have a proof up to i(α) = α′. Hence T does not have a proof up to α′ in Set. But
∣V ∣ =(complexity T ) and so α′ < (complexity of T )+, contradicting (1).

In particular we have shown that (0) and (1) are equivalent. But (0) easily
implies (2) and (2) implies (1) because Theorem 3.77 (3) implies any model of
¬Prα(T ) is also a model of ¬Prα′(T ) for all α′ > α. Hence we are done.

�

Now as a consequence of Lemma 4.6 we have the following.

Lemma 4.7. If V0 ⊧“(complexity T ) = ω1” then the following are equivalent:

(0) T is valid in V1.

(1) T has a proof up to α for all α < ωV0

1 in V0.
(2) In V1: All sheaf models for which T is legal satisfy T .
(3) In V0: All countably generated sheaf models for which T is legal satisfy T .

Proof. First note that because Prα(T ) ∈ V0 for all α ∈ ORD(V0) and if Prα has a
proof in V1 it must also have a proof in V0 the equivalence of (0) and (1) follows
from Lemma 4.6.

Next note that (2) easily implies (3) as being legal, as well as the satisfaction
relation between L-structures and sentences of Sen∞,ω(L), is absolute.

Next assume (3) holds. If α < ωV0

1 then working in V0, Prα(T ) ∈ Lω1,ω is true
in all countable models and hence (by the downward Löwenheim-Skolem theorem)
is true in all models. But then Prα(T ) is valid (by the completeness theorem for

Lω1,ω in Set) and so we have ⊢ Prα(T ). (1) follows as α was arbitrary < ωV0

1 .
Finally to show that ¬(2) implies ¬(1) (and hence (1) implies (2)), notice that if

there is some sheaf model in V1 which doesn’t satisfy T then there is some κ such
that T doesn’t have a proof in V1 up to κ. But then T doesn’t have a proof in V0

up to κ either (as Prκ(T ) ∈ V0 and ORD(V0) = ORD(V1)). Hence by Lemma 4.6,

there is some α < ωV0

1 such that T doesn’t have a proof up α.
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�

Theorem 4.8 (Completeness Theorem). If L is countably generated then the col-
lection of sentences of Senω1,ω(L) which have countable complexity and are valid is
Σ1(ω1).

Proof. First notice that the collection of sentences T such that if ⟨X,β⟩ ⪯ T
then ⟨X,β⟩ is definable with countable complexity is a (uniformly) Σ1 collec-
tion of sentences. Let Tot be this collection. The Σ1(ω1) definition is then
{T ∈ Tot ∶ (∀α < ω1) ⊢ Prα(T )}. �

Note that this does not mean that the collection is uniformly Σ1. The reason is
this definition uses ω1, which is not absolute, as a parameter.

Lemma 4.9. If L is countably generated then the collection of sentences of Senω1,ω(L)
which have countable complexity and are valid is Π2 over the hereditarily countable
sets (HC).

Proof. First notice that any such sentence is in HC. Also notice the the collection
Tot ∩HC (from the proof of Theorem 4.8) is Σ1 over HC. The Π2 definition is
then {T ∈ Tot ∶ (∀α) ⊢ Prα(T )}. �

The previous completeness theorem only worked for sentences with connectives
that were definable by formulas with countable complexity. We now turn to the
general case.

In what follows suppose X ⊆ Ω is countably generated and T ∈ Senω1,ω(L) is a
⊑-maximal sentence. Let TX be a sentence such that all partial connectives have a
domain containing X and TX ⊑ T .

Theorem 4.10. T is valid if and only if TX is ω1-valid for every countable X.

Proof. Left implies Right: Any M-structure which satisfies T and for which TX is
legal also satisfies TX by Lemma 2.33. Further, if T is valid, then as it is ⊑-maximal,
it hold in all sheaf models.

¬Left implies ¬Right: Suppose there is some sheaf model M such that M /⊧ T .
Then, as T is ⊑-maximal we must have M ⊧ ¬T . Now let V ≺n Set be countable
with M ∈ V and let i ∶ V → V0 be the transitive collapse. Then i(M) ⊧ i(T ). But
as i(Ω) ⊆ Ω, i(T ) is legal for i(M) and i(M) ⊧ ¬Ti(M). Therefore Ti(Ω) is not
ω1-valid (as i(M) must have height < ω1).

�

Corollary 4.11. Let Pω(Ω) be the collection of countable subpresheaves of Ω.
Then the collection of valid sheaf sentences in Senω1,ω(L) is Σ1(ω1,Pω(Ω)).

Proof. This follows immediately from the Theorem 4.8 and Theorem 4.10. �

4.4. Barwise Compactness. In this section we show that for certain admissible
sets a version of Barwise’s compactness theorem holds.

Theorem 4.12. Suppose V is a countable Σ1-admissible set (with respect to some
language) such that

● V ⊧“There exists a Σ1-definable well-ordering”.
● {(C,JC),L} ∈ V .
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● V ⊧ (∃κ)∣κ∣ > ∣mor(C)∣.
Further suppose T ⊆ V ∩ Senω1,ω(L) is Σ1 over V and the collection of definable

partial connectives ⟨Q⟨X,β⟩ ∶ ⟨X,β⟩ ⪯ ⋀̌T ⟩ is also Σ1 over V (where Q⟨X,β⟩ defines

⟨X,β⟩). We then have that if every V -finite subset1 of T has a model in V then T
also has a model.

Proof. Let α = (∣JC ∣+)V . By our assumption on T and the definable partial con-

nectives, the collection T ∗ ∶= {
....
Senα(U) ∶ U ∈ T} is also Σ1 over V .

Now if F ⊆ T is V -finite we have by assumption that F has a model in V . But
then by Proposition 2.11, Lemma 3.13 and the fact that the only components which

use encoded ordinals are encoded witnesses to covers, we have {
....
Senα(U) ∶ U ∈ F}

also has a model.
By Barwise compactness we then have that T ∗ has a model M∗. But then by

Theorem 3.77 (1) we have Rep(M∗) ⊧ T .
�

Just as with Barwise compactness we can’t assume that the resulting model is
actually in V . However unlike with Barwise compactness our proof makes fun-
damental use of the fact that the models realizing the V -finite subsets of T are
themselves V -finite.

5. Open Questions

We now discuss some open questions for future research.

Completeness

(1a) In Theorem 4.8 is the parameter ω1-necessary? Or more concretely, is there
a weak site (C,JC) such that the collection valid sentences of Senω1,ω(L)
in Sh(C,JC) is not Σ1-definable?

(1b) What are some criteria on a weak site (C,JC) which ensure that the col-
lection of valid sentences of Senω1,ω(L) in Sh(C,JC) is Σ1-definable with a
Σ1-definition which is independent of the model of set theory? For example
the trivial weak site is an instance of such a (C,JC).

Barwise Compactness

(2a) In Theorem 4.12 can the conditions on V , beyond admissibility, be weak-
ened?

(2b) What are some conditions on a weak site (C,JC) which will ensure that
Barwise Compactness holds for all admissible sets V ? For example the
trivial weak site is an instance of such a (C,JC).

Hanf Number
Define the Hanf number of Senω1,ω(L) for (C,JC) to be the smallest κ such
that for any ϕ ∈ Senω1,ω(L) if there is a sheaf modelM such thatM⊧ ϕ andM is
not γ-generated for any γ < κ then for all κ∗ there is a sheaf model M∗ such that
M∗ ⊧ ϕ and M∗ is not γ∗-generated for any γ∗ < κ∗.

1Recall a set is “V -finite” if it is an element of V .
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If (C,JC) is the trivial site, so Sh(C,JC) = Set, then it known that the Hanf
number of Senω1,ω(L) for (C,JC) is ℶω1 .

(3) Is it the case that for any countable weak site (C,JC) the Hanf number of
Senω1,ω(L) for (C,JC) is ℶω1?

Generalized Ultrametric Spaces
For a complete lattice Γ a Γ-ultrametric metric space is an ultrametric space whose
distances take values in Γ. The category of Γ-ultrametric spaces is equivalent to
the category of flabby separated presheaves on Γop (see [1] for more on this). As
such the results of this paper should generalize in a straight forward way to models
in the category of Γ-ultrametric spaces (i.e. sheaf models all of whose sorts are
flabby). This suggests two collections of questions.

(4a) If we look only at models in the category of Γ-ultrametric spaces (for a
fixed Γ), does the collection of valid Senω1,ω(L) in Sh(C,JC) have a Σ1

definition? If so can the definition be made uniform in Γ? Does Barwise
compactness hold for all admissible sets V ?

(4b) Do the results of this paper generalize to continuous model theory, i.e.
model theory where the sorts are interpreted as complete metric spaces (as
in [5])?
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