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Abstract. Suppose σ ∈ Lω1,ω(L) is such that all equations occurring in σ
are positive, have the same set of variables on each side of the equality symbol,
and have at least one function symbol on each side of the equality symbol. We
show that σ satisfies Vaught’s conjecture. In particular this proves Vaught’s
conjecture for sentences of Lω1,ω(L) without equality.

1. Introduction

Vaught’s conjecture is one of the oldest open problems in model theory. It
says (in its modern form) that for any countable language L and any sentence
σ ∈ Lω1,ω(L), either σ has a perfect set of countable models or σ has countably
many countable models. Vaught’s conjecture is known to hold in many situa-
tions, such as for ω-stable theories [7], for o-minimal theories [4], as well as many
others. In this paper we add a new collection of sentences for which Vaught’s
conjecture is known to hold.

Call an equation t0(x1, . . . , xn) = t1(y1, . . . , ym) uniform if the sets of vari-
ables {x1, . . . , xn} and {y1, . . . , ym} are equal (as sets), and both t0 and t1 contain
at least one function symbol. We will show (Theorem 4.1) that if σ ∈ Lω1,ω(L) is
any sentence in which all equations are uniform and occur positively, then σ satis-
fies Vaught’s conjecture. As an immediate consequence we will see that Vaught’s
conjecture holds for any sentence of Lω1,ω(L) which doesn’t contain equations.
This will answer a question in [6]. Our proof will also show that Martin’s con-
jecture holds for sentences of this form.

Our proof will proceed in three parts. First, in Section 2, we show for each
model there is a maximal equivalence relation whose quotient map is a homo-
morphism which reflects all non-equality relations. We will then study these
equivalence relations along with their quotients, which we call cores. In Section 3
we show that under certain conditions cores can be blown up to produce a perfect
set of models all of which satisfy some of the same sentence of Lω1,ω(L). Finally,
in Section 4, we use the results of Section 3 to show that both Vaught’s conjecture
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and Martin’s conjecture hold for any sentence which only contains equalities that
occur positively and are uniform.

1.1. Background. In this paper we will not treat equality as a logical symbol but
rather as a relation which is in any language and which has a special interpretation
in any structure. We will fix a countable language L along with a countable
collection of variables, from which all variables will be drawn. In this paper σ
and its variants will be elements of Lω1,ω(L). We let Atomic(L) be the collection
all formulas which are either atomic or the negation of atomic formulas. If F ⊆
Lω1,ω(L) then we let Lcω1,ω

(F ) be the smallest subset of Lω1,ω(L) containing F and
closed under

∧
,
∨
,∃ and ∀. We will mainly be concerned with Lcω1,ω

(F ) when
F ⊆ Atomic(L). In particular there are several subsets of Atomic(L) which will
be important later and which we collect now.

• Rel = {Q(x) : Q does not contain =}.
• Uni = Rel ∪ {t0(x) = t1(y) : a uniform equation}.
• Func = Rel ∪ {t0(x) = t1(y) : t0, t1 any terms each of which contain at

least one function symbol}.
• Pos = Rel ∪ {t0(x) = t1(y) : t0, t1 any terms}.
• Neg = Rel ∪ {t0(x) 6= t1(y) : t0, t1 any terms}.

Notice that any sentence of σ ∈ Lω1,ω(L) is equivalent to one where negation
only occurs in front of atomic formulas. Hence if σ is any sentence in which
all equations are positive and uniform, then σ is equivalent to a sentence in
Lcω1,ω

(Uni).
In this paper all models will be countable and we let M and N (and their

variants) be L-structures with underlying sets M and N respectively. We say
a map α : M → N is a strong homomorphism if for any j-ary relation
R ∈ L− {=},

(∀m1, . . . ,mj ∈M) M |= R(m1, . . . ,mj)⇔ N |= R(α(m1), . . . , α(mj))

and for any j-ary function f

(∀m1, . . . ,mj ∈M) N |= α(f(m1, . . . ,mj)) = f(α(m1), . . . , α(mj))

(we will consider constants as 0-ary functions). Note α is a strong homomorphism
exactly when it preserves all formulas in Pos.

We will assume we are working in a background model Set of Zermelo-Frankel
Set Theory. However, all of our statements about specific σ are Σ1

2(σ) and so they
hold of σ in Set if and only if they hold of σ in L[σ]. But, as L[σ] always satisfies
the Axiom of Choice, we can assume without loss of generality that Set does as
well.

For any definitions or results not in this paper we refer the reader to such
standard texts as [1] for infinitary logic, [2] for model theory and [3] for set theory.
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2. Preserving and Reflecting Formulas

In this section we study equivalence relations whose quotients preserve and
reflect formulas we care about.

Definition 2.1. If α : M → N is a strong homomorphism let Pres(α) be the
collection of formulas ϕ ∈ Lω1,ω(L) such that:

(∀m1, . . . ,mj) M |= ϕ(m1, . . . ,mj)⇒ N |= ϕ(α(m1), . . . , α(mj))

i.e. the collection of formulas which are preserved by α. Also let Refl(α) be the
collection of formula ϕ ∈ Lω1,ω(L) such that:

(∀m1, . . . ,mj) N |= ϕ(α(m1), . . . , α(mj))⇒M |= ϕ(m1, . . . ,mj)

i.e. the collection of formulas which are reflected by α.

Lemma 2.2. Suppose α : M→ N is a surjective strong homomorphism. Then

• Lcω1,ω
(Pres(α)) = Pres(α).

• Lcω1,ω
(Refl(α)) = Refl(α).

i.e. Pres(α) and Refl(α) are both closed under
∧
,
∨
, ∃,∀.

Proof. For any strong homomorphism it is immediate that both Pres(α) and
Refl(α) are closed under

∧
and

∨
. It is also immediate that Pres(α) is closed

under ∃ and Refl(α) is closed under ∀.
That Pres(α) is closed under ∀ and that Refl(α) is closed under ∃ follows

from the surjectivity of α. �

The following is then immediate.

Corollary 2.3. If α : M → N is a surjective strong homomorphism then
Lcω1,ω

(Pos) ⊆ Pres(α) and Lcω1,ω
(Neg) ⊆ Refl(α).

Every surjective map α : M → N induces an equivalence relation ≡α on M
given by a ≡α b if and only if α(a) = α(b). Further, if α is a strong homomorphism
then N ∼= M/≡α. Given an equivalence relation ≡ on M , and a ∈ M , we define
[a]≡ := {b ∈M : b ≡ a}.

Definition 2.4. An equivalence relation ≡ on M is said to respect L if there is a
(necessarily unique) L-structure with underlying set M/≡ such that the quotient
map e≡ : M →M/≡ is a strong homomorphism.

As it turns out, on any structure there is a unique maximal equivalence relation
which respects the language. This equivalence relation will play a significant role
in what follows.

Definition 2.5. Let

� (y0, y1) :=
∧
{(∀x1, . . . , xj)Q(y0, x1, . . . , xj)↔ Q(y1, x1, . . . , xj) : Q ∈ Rel}.

We will write � (y0, y1) as y0 � y1.
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It is immediate from the definition that �M is always an equivalence relation
on M. We will abbreviate the quotient map e�M : M →M/�M by eM. We now
show several important properties which always hold of �M for any L-structure
M.

Proposition 2.6.

(1) �M respects L.

Suppose ≡ is an equivalence relation on M which respects L.

(2) ≡⊆�M.
(3) If ≡ is definable by a formula in Lcω1,ω

(Rel) then ≡M=�M.

Proof. (1):

We will define an L-structure N with underlying set M/�M such that eM : M→
N is a strong homomorphism.

For any a∗i , a1, . . . , aj ∈M with a∗i �M ai and any Q ∈ Rel we have

M |= Q(a1, . . . , ai−1, ai, ai+1, . . . , aj)↔ Q(a1, . . . , ai−1, a
∗
i , ai+1, . . . , aj). (1)

Hence, by repeated use of (1), we have that whenever b1, . . . , bj ∈ M with∧
i≤j ai �M bi, that M |= Q(a1, . . . , aj) ↔ Q(b1, . . . , bj). Therefore for any

j-ary relation R whether or not M |= R(a1, . . . , aj) holds depends only on
the �-equivalence classes of a1, . . . , aj and so it is consistent to define N |=
R([a1]�, . . . , [aj]�) if and only if M |= R(a1, . . . , aj). It is then clear that the map
eM preserves and reflects R(x1, . . . , xj).

Now suppose f is any j-ary function symbol in L, a1, . . . , aj, b1, . . . , bj ∈ M
and

∧
i≤j ai �M bi. For any Q ∈ Rel let Q′(x1, . . . , xk, y1, . . . , yj) be the for-

mula Q(x1, . . . , xk, f(y1, . . . , yj)). By the argument of the previous paragraph, if
c1, . . . , ck ∈M , we have M |= Q′(c1, . . . , ck, a1, . . . , aj)↔ Q′(c1, . . . , ck, b1, . . . , bj).
Hence, as Q was arbitrary, fM(a1, . . . , aj) �M fM(b1, . . . , bj). In particular
this means that the �-equivalence class of fM(a1, . . . , aj) depends only on the
�-equivalence classes of a1, . . . , aj. It is therefore consistent to define N |=
f([a1]�, . . . , [aj]�) = [f(a1, . . . , aj)]�, which we do. It is then clear that N is
a L-structure and eM : M→ N is a strong homomorphism.

(2):
Suppose a1, . . . , aj, b, c ∈ M , b ≡ c and Q ∈ Rel. We then have the following
equivalences: M |= Q(b, a1, . . . , aj) if and only if M/≡|= Q(e≡(b), e≡(a1), . . . , e≡(aj))
if and only if M/≡|= Q(e≡(c), e≡(a1), . . . , e≡(aj)) if and only if M |= Q(c, a1, . . . , aj).
Hence M |= (∀x1, . . . , xj)Q(b, x1, . . . , xj)↔ Q(c, x1, . . . , xj). But, as Q was arbi-
trary this implies b �M c.

(3):

By (2) we have ≡⊆�M. Suppose x ≡ y is definable by a formula ψ(x, y) ∈
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Lcω1,ω
(Rel) and a, b ∈ M with a 6≡ b. As Lcω1,ω

(Rel) is closed (up to equiva-
lence) under negation, we have ¬ψ(x, y) is equivalent to a formula in Lcω1,ω

(Rel).

But eM preserves all formulas of Lcω1,ω
(Rel) and so M/�M|= ¬ψ(eM(a), eM(b)).

However this implies eM(a) 6�M/�M
eM(b) (as M |= (∀x)ψ(x, x) and so M/�M|=

(∀x)ψ(x, x)). Because eM reflects all formulas of Lcω1,ω
(Rel), including �, we have

a 6�M b. In particular this implies �M⊆≡ and hence �M=≡. �

Because � respects L the following notion is well defined.

Definition 2.7. The core of M, denoted C(M), is the unique L-structure with
underlying set M/�M such that eM : M →M/�M is a strong homomorphism.

It is immediate that C(C(M)) ∼= C(M) and so we say M is a core if C(M) ∼=
M. In particular M is a core if and only if �M is =M. The following is a
quintessential example of a core.

Example 2.8. Suppose ≤∈ L is a binary relation and M |=“≤ is a partial order”.
Then M is a core. To see this observe that the formula “x ≤ y ∧ y ≤ x” is an
equivalence relation definable in Lcω1,ω

(Rel) and hence must be equivalent (over
M) to �. But as ≤ is a partial order x ≤ y ∧ y ≤ x implies x = y.

The following is an easy corollary of Corollary 2.3 and Proposition 2.6.

Corollary 2.9. If σ ∈ Lcω1,ω
(Pos) and M |= σ then C(M) |= σ.

3. Properties of Cores

In this section we discuss what can be said about a sentence just knowing that
it is satisfied by a core.

Proposition 3.1. Suppose there is a j-ary function symbol g ∈ L with j > 0,
σ ∈ Lcω1,ω

(Uni ∪ Neg) and there is a core M such that M |= σ. Then there is a
perfect set of countable L-structures all of which satisfy σ.

Proof. Suppose C(N) = M and eN : N→ C(N) reflects all formulas in Uni. Then
by Lemma 2.2 and Corollary 2.3 eN reflects all formulas in Lcω1,ω

(Uni ∪ Neg). In
particular eN reflects σ and as C(N) = M, we have N |= σ as well.

It therefore suffices to construct, for each S ⊆ N − {0}, a countable model
MS such that C(MS) = M, eMS

reflects all formulas in Uni, and if S0 6= S1 then
MS0 6∼= MS1 . We will define MS in three stages.

Stage 1:
Let AS =

⋃
n∈S{n} × n. The underlying set of MS is MS = M × AS.

Stage 2:
For any j-ary relation R ∈ L and any 〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉 ∈MS

MS |= R(〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉)⇔M |= R(m1, . . . ,mj).
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Stage 3:
For any j-ary function f ∈ L and any 〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉 ∈MS

MS |= f(〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉) = 〈m∗, n∗, a∗〉

if and only if

• M |= f(m1, . . . ,mj) = m∗.
• n∗ = min{n1, . . . , nj}.
• a∗ = 0.

Let (m1, n1, a1) ≡ (m2, n2, a2) if and only if m1 = m2. It is then immediate that
≡ is an equivalence relation which respects L and hence ≡⊆�MS . Further, as
M ∼= MS/≡ and M is a core, ≡ must be the maximal equivalence relation which
respects L. Hence by Proposition 2.6 we have ≡=�MS and C(MS) ∼= M.

If t(x1, . . . , xn) is an arbitrary term containing at least one function symbol
then

MS |= t(〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉) = 〈tM(m1, . . . ,mj),min{n1, . . . , nj}, 0〉.

So, if M |= t0(m1, . . . ,mj) = t1(m1, . . . ,mj), with t0(x1, . . . , xj) = t1(x1, . . . , xj)
a uniform equation, then for all 〈n1, a1〉, . . . , 〈nj, aj〉 ∈ AS we have

MS |= t0(〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉) = t1(〈m1, n1, a1〉, . . . , 〈mj, nj, aj〉) (2)

and hence eMS
reflects t0(x1, . . . , xj) = t1(x1, . . . , xj). Notice (2) hinges on the

fact that each ni occurs on each side of the equality.
Now suppose S0, S1 ⊆ N − {0} but S0 6= S1. Let h(x) = g(x, x, . . . , x). For

any L-structure N let W (N) = {|(hN)−1(a) ∩ [b]�N| : a, b ∈ N}, i.e. the possible
sizes of the inverse images (under h) of an element in an �N-equivalence class.
It is immediate from Definition 2.5 that whenever N0

∼= N1, W (N0) = W (N1).
But it is also immediate from the construction that W (MS) = S ∪ {0}. So
W (MS0) 6= W (MS1) and hence MS0 6∼= MS1 and we are done. �

Proposition 3.2. Suppose σ ∈ Lcω1,ω
(Func∪Neg) and there is an infinite core M

such that M |= σ. Then there is a perfect set of L-structures all of which satisfy
σ.

Proof. It suffices to construct, for each S ⊆ N − {0}, a model MS such that
C(MS) = M, eMS

reflects all formulas of Func and where S0 6= S1 implies
MS0 6∼= MS1 . We will define MS in three stages.

Stage 1:
Let i : M → S be a surjective map (which must exist as M is infinite). Then the
underlying set of MS is MS =

⋃
m∈M{m} × i(m).
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Stage 2:
For any j-ary relation R ∈ L and any 〈m1, a1〉, . . . , 〈mj, aj〉 ∈MS

MS |= R(〈m1, a1〉, . . . , 〈mj, aj〉)⇔M |= R(m1, . . . ,mj).

Stage 3:
For any j-ary function f ∈ L and any 〈m1, a1〉, . . . , 〈mj, aj〉 ∈MS we let

MS |= f(〈m1, a1〉, . . . , 〈mj, aj〉) = 〈m∗, a∗〉

exactly when

• M |= f(m1, . . . ,mj) = m∗.
• a∗ = 0.

Let (m1, a1) ≡ (m2, a2) if and only if m1 = m2. It is easily checked that ≡ is an
equivalence relation which respects L and hence is contained in �MS . Further,
as M ∼= MS/≡ and M is a core, ≡ must be the maximal equivalence relation
which respects L. So by Proposition 2.6 we have ≡=�MS and C(MS) ∼= M. It
is also immediate that eMS

reflects all formulas in Func. Hence, by Lemma 2.2
and Corollary 2.3, eMS

reflects all formulas of Lcω1,ω
(Func ∪ Neg). In particular

eMS
reflects σ, and so MS |= σ (as M |= σ).
Finally, let E(N) = {|[a]�N| : a ∈ N}. As � is definable, E(N) is preserved

by isomorphism. But by construction E(MS) = S. So if S0 6= S1 then E(MS0) 6=
E(MS1) and MS0 6∼= MS1 . �

Example 3.3. Suppose ≤∈ L, σ ∈ Lcω1,ω
(Func ∪ Neg) and there is an infinite M

such that

• M |= σ.
• M |=≤ is a partial order.

Then σ has a perfect set of models. This follows from Proposition 3.2 and Ex-
ample 2.8.

In Proposition 3.1 and Proposition 3.2 we have shown that given a core M, if
either M is infinite, or if there is a function symbol of arity > 0 in the language,
then we can “blow up” M to a perfect set of models all of whose cores are M
and all of which satisfy some of the same sentences as M. Next we show that if
neither of these conditions is satisfies, i.e. there are no functions of arity > 0 and
if M is finite, then any model with core M must have a simple description.

For any first order theory T ⊆ Lω,ω(L), let S(T ) be the collection of complete
types over T . Let L1(T ) be the smallest fragment of Lω1,ω(L) containing Lω,ω(L)∪
{
∧
ϕ∈p ϕ(x) : p ∈ S(T )}. For a model M, let Th0(M) be the complete first order

theory of M in L and let Th1(M) be the complete theory of M in L1(Th0(M)).

Definition 3.4. We say M has the Martin property if S(Th0(M)) is countable
and Th1(M) is ℵ0-categorical.
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In particular, if M has the Martin property then it has quantifier rank at most
ω+ω. Martin’s conjecture for a first order theory T says either T has a perfect
set of countable models or else every model of T has the Martin property.

It is worth mentioning that Martin’s conjecture does not hold if we replace
“first order theory” with “sentence of Lω1,ω(L)”. For example, if M has high
quantifier rank (such as if M is a well-ordering of type β � ω) and σM is a Scott
sentence of M, then σM is ℵ0-categorical even though M in general will not have
the Martin property.

The reason why Martin’s conjecture fails in this case is that we are able to
encode a great deal of complexity in the sentence σM, complexity which is lost
when we drop down to the first order theory. A better generalization of Martin’s
conjecture for σ ∈ Lω1,ω(L) would be something along the lines of, “either σ has a
perfect set of model, or the quantifier rank of any model of σ is at most β+ω+ω
where β is the quantifier rank of σ”. Of course if σ satisfies the condition of
Martin’s conjecture, then it also satisfies this condition. We will not dwell more
on this topic now. We mention it simply to prepare the reader for Corollary 4.2
in which we show that in fact if we replace “first order theory” with “sentence of
Lcω1,ω

(Uni)” then Martin’s conjecture will hold.

Proposition 3.5. Suppose L has no function symbols of arity > 0 and C(M) is
finite. Then M has the Martin property.

Proof. Before we begin the proof it is worth taking a moment to describe what
such a model M will look like. Let LR ⊆ L be the collection of all non-equality
relations in L. Such a model M will have one �-equivalence class for each element
of C(M). Further, M|LR

will be completely determined by the number of elements
in each equivalence class along with the structure of C(M)|LR

. M will also
determine which constants are equal to which others as well as which constants
are �-equivalent to each other. The last piece in the description of M is then
the number of elements in each �-equivalence class which are not equal to any
constant. In particular, any model N with C(N) = C(M) and which agrees with
M on the above will be isomorphic to M. We now make this precise.

Let C(M) = {a1, . . . , aj}. As C(M) is finite, there is a finite L0 ⊆ LR such
that any automorphism of C(M)|L0 is also an automorphism of C(M)|LR

. For
each finite L∗ ⊆ LR let ΨL∗(x1, . . . , xj) be the (first order formula which is the)
conjunction of the complete L∗-type of 〈a1, . . . , aj〉 in C(M). Let �L∗ be the
conjunction of � ∩Lω,ω(L∗). Let TRel consist of the following, for each finite L∗

with L0 ⊆ L∗ ⊆ LR.

• (∀x1, . . . , xj) ΨL0(x1, . . . , xj)↔ ΨL∗(x1, . . . , xj).
• (∀x1, . . . , xj, x) ΨL0(x1, . . . , xj)→

∨
i≤j x �L0 xi.

• (∀x0, x1) x0 �L0 x1 ↔ x0 �L∗ x1.
• (∃x1, . . . , xj) ΨL0(x1, . . . , xj).
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We then also have TRel |= (∀x0, x1) x0 �L0 x1 ↔ x0 � x1 and that Th0(M) |=
TRel. In fact Th0(M) along with the statement that there exists exactly j-
elements determines C(M)|LR

up to isomorphism.
Let {ci : i ∈ κ} = Lc be the collection of function symbols of arity 0 (i.e. con-

stant symbols) in L. Let L′ = L ∪ {d1, . . . , dj} where the di’s are new constants.
Define TCon to consist of the following, where c, c′ range over Lc.

• c = c′ if M |= c = c′ and c 6= c′ if M |= c 6= c′.
• ΨL0(d1, . . . , dj).
• c �L0 di if C(M) |= c = ai.
• di = ck if C(M) |= ck = ai and k is the least such that this holds.

The purpose of the new constants d1, . . . , dj are to allow us to explicitly talk
about each �M-equivalence class.

For i ≤ j let ni = |e−1M (ai)|. Let TSize consist of the following

• If ni is finite then (∃nix)x �L0 di and ¬(∃ni+1x)x �L0 di.
• If ni = ω then for all n ∈ ω, (∃nx)x �L0 di

Let T = TRel ∪ TCon ∪ TSize. It is easily seen that every model of Th0(M) has an
expansion to an L′-structure which satisfies T and further, up to isomorphism,
that this expansion is unique (as all we are doing is adding a new constant to
�-equivalence classes which may not have one). Let M′ be such an expansion of
M.

Now suppose L∗ ⊆ L′ has only finitely many constants. It is then easily
checked that for any N |= T , N|L∗ ∼= M|L∗ . In particular this implies that T is a
complete theory.

Let p(x) := {x 6= c : c ∈ Lc} and pi(x) := p(x)∪{x �L0 di, x 6= di}. It is easy
to see that if pi(x) is consistent over T then

∧
ϕ∈pi ϕ(x) is equivalent over T to a

complete type. Further it is also immediate that every complete 1-type in S(T )
is equivalent over T to one of

∧
ϕ∈pi ϕ(x), x = ck or x = di (where ck ∈ Lc and

i ≤ j). Further, for every sequence of complete 1-types t1(x1) . . . , tk(xk) ∈ S(T ),
the statement

∧
i≤k ti(xi)∧

∧
i 6=j xi 6= xj is a complete type. Hence every complete

type over T is of this form and |S(T )| ≤ ω.
However, as T is an expansion of Th0(M) we also have |S(Th0(M))| ≤ ω

and for every complete type r(x1, . . . , xk) ∈ S(Th0(M)) there are complete 1-
types s1, . . . , sk such that Th0(M) |= (∀x1, . . . , xl) r(x1, . . . xl) ↔

∧
i≤l si(xi).

Hence every model of Th0(M) is determined up to isomorphism by how many
realizations there are of each 1-type. In particular this implies every complete
theory in L1(Th0(M)) is ℵ0-categorical and M has the Martin property. �

It is worth mentioning that if there are only finitely many constants in L, then
p(x) is equivalent to a first order formula and hence if C(M) is finite, then T is
ℵ0-categorical. But, as every model of Th0(M) has an expansion to a model of
T , Th0(M) is also ℵ0-categorical.
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4. Main Theorems

We are now ready to prove our main theorems.

Theorem 4.1 (Vaught’s Conjecture for Lcω1,ω
(Uni)). If σ ∈ Lcω1,ω

(Uni) then
either σ has a perfect set of countable models or σ has only countably many
countable models.

Proof. If σ has no countable models we are trivially done, so lets assume σ has
at least one countable model (i.e. is consistent). We then have three cases to
consider.

Case 1: L contains a function of arity > 0.
By assumption there is a model M |= σ and by Corollary 2.3 C(M) |= σ as well.
But then by Proposition 3.1, σ has a perfect set of models.

Case 2: There is a M |= σ with C(M) infinite.
By Corollary 2.3 C(M) |= σ and so by Proposition 3.2, σ has a perfect set of
models.

Case 3: For every M |= σ, C(M) is finite.
In this case, by Proposition 3.5, every model has the Martin property and hence
has quantifier rank at most ω + ω. But then by results of Morley (see [5]) σ
satisfies Vaught’s conjecture. �

In particular Theorem 4.1 implies that Vaught’s conjecture holds for all sen-
tences of Lω1,ω(L) which do not have equality as a subformula (i.e. are equivalent
to a formula in Lcω1,ω

(Rel)).
Further, as an immediate corollary we have

Corollary 4.2 (Martin’s Conjecture for σ ∈ Lcω1,ω
(Uni)). For any σ ∈ Lcω1,ω

(Uni),
either σ has a perfect set of models or every model of σ has the Martin property.

5. Acknowledgements

The author would like to thank Gerald Sacks for introducing him to Vaught’s
conjecture as well as Cameron Freer and Rehana Patel for useful discussions
concerning infinitary logic without equality.

References

[1] Jon Barwise. Admissible sets and structures. Springer-Verlag, Berlin, 1975. An approach to
definability theory, Perspectives in Mathematical Logic.



VAUGHT’S CONJECTURE WITHOUT EQUALITY 11

[2] Wilfrid Hodges. Model theory, volume 42 of Encyclopedia of Mathematics and its Applica-
tions. Cambridge University Press, Cambridge, 1993.

[3] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2003. The third millennium edition, revised and expanded.

[4] Laura L. Mayer. Vaught’s conjecture for o-minimal theories. J. Symbolic Logic, 53(1):146–
159, 1988.

[5] Michael Morley. The number of countable models. J. Symbolic Logic, 35:14–18, 1970.
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