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Abstract

The goal of this paper is to extend Morley’s results in [9] to realizability toposes.

We consider two natural notions of “countable model” in this context. We show

for both of these notions of countable and for any first order theory T in a

countable language, that there is either a perfect set of non-isomorphic models

of T or there are at most ℵ1 many non-isomorphic models of T in the realizability

topos over any countable PCA.
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1. Introduction

1.1. Summary

One of the oldest open questions in model theory is “how many countable

models can a countable first order theory have?” This problem was first pro-

posed by Vaught in his seminal paper [12] where he asked “Can it be proved,

without the use of the continuum hypothesis, that there exists a complete theory

having exactly ℵ1 non-isomorphic denumerable models?”. Since that time the

statement that every first order theory has either countably many or continuum

many countable models, a statement which would imply a negative answer to

Vaught’s question, has become known as “Vaught’s conjecture”.
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In his paper [9] Morley took one of the most significant steps towards re-

solving Vaught’s conjecture. Morley not only proved that any first order theory

which did not have a perfect set of countable models had at most ℵ1 many

countable models but he also showed that this result holds for arbitrary sen-

tences of Lω1,ω. Morley’s result was significant not only because it provided a

concrete bound on the ways in which Vaught’s conjecture could fail, but also

because it extended Vaught’s conjecture into the realm of infinitary logic and

as such opened up a large collection of new methods for studying the problem.

In [1] the author showed that, under a mild determinacy hypothesis, Mor-

ley’s result1 could be extended to categories of sheaves on a (countably gener-

ated) site. Just as Morley’s original result led to a generalization of Vaught’s

conjecture for sentences of Lω1,ω the results in [1] lead to an extension of

Vaught’s conjecture to the realm of Grothendieck Toposes. Further, the results

of [1] suggest the question: “Are there other toposes (with a natural notion of

countable) for which Morley’s theorem holds?”

The goal of this paper is to further extend Morley’s theorem to those re-

alizability toposes which come from a countable partial combinatorial algebra

(PCA). We will do this by reducing the question of how many countable models

of a theory exists in a realizability topos to a question about the number of

models in the category of sets of a (related) sentence of Lω1,ω(σ).

Our proof consists of three parts. As is well known, every realizability

topos can be constructed as the category of partial equivalence relations on a

first order hyperdoctrine. The first step in the proof is to show that we can

represent any model in a realizability topos inside of this hyperdoctrine using

what we call “interpretations”. In the second part of the proof we show how to

define the collection of interpretations which satisfy a given theory by models in

the category of sets which satisfy a given formula of L∞,ω. In this way we get,

for every model of a theory in our realizability topos, a model in the category of

1As was observed in [1] in categories of sheaves there are four natural notion of countable.

In [1] we show that Morley’s theorem holds for each of these four notions.

2



sets. This will then also allow us to show that the isomorphism relation in our

realizability topos can be described by a PCω1
class on the collection of models

in the category of sets. Finally we will use these results and various theorems

of descriptive set theory to prove Morley’s theorem in our realizability topos.

1.2. Outline

The structure of the paper is as follows. In Section 2 we review terminology

and standard results from infinitary logic, set theory and category theory. In

Section 3 we will review the basic notions concerning hyperdoctrines. It is in

this section that we introduce the notion of an interpretation of a language in

a hyperdoctrine as well as our notion of a model in a hyperdoctrine. This will

lead to the most important result of this section, Proposition 3.24, which says

there are natural maps between the models of a language in a hyperdoctrine and

the models in the category of partial equivalence relations on the hyperdoctrine.

Most of the material in Section 2 and Section 3 is either well known or closely

related to well known material and we reproduce it here for completeness and

to make precise what we are discussing.

In Section 4.1 we introduce the central new notion of this paper, that of a

definable hyperdoctrine. The definition introduces added structure which will

allow us to capture (some of) the underlying hyperdoctrine operations using

models in the category of sets. As we will see this is a versatile notion and

many of the hyperdoctrines associated with realizability (and not just those as-

sociated with realizability over a PCA) are definable. In Section 4.2 we show

that for each language σ there is a theory T (σ) and an isomorphism of categories

between interpretations of σ and models of T (σ). In Section 4.3 and Section

4.4 we show, for a realizability topos over a PCA, how to define the collection

interpretations which satisfying a given theory, using those models of T (σ) in

the category of sets that satisfy a sentence of L∞,ω.

In Section 5 we introduce the two notions of countable which we will con-

sider. The first of these notions, being countably generated, comes from an

analysis of the partial equivalence relation construction over a definable hyper-
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doctrine. The second notion, being monic bound means you are isomorphic

to a subobject of your bound. In this way if we have an object, like say the

natural numbers object, which is intrinsically countable, then we can consider

those objects which are bound by it.

Finally in Section 6 we prove the main theorems of this paper. In Section

6.1 we prove a generalization of Morley’s theorem for countably generated mod-

els. Specifically we show that given any first order theory T , there are either

continuum many or at most ℵ1 many countably generated models in the cate-

gory of partial equivalence relations over a countably presented simple definable

hyperdoctrine. In Section 6.2 we then prove the same result for models monic

bound by a countably generated object.

We end this paper in Section 7 with two related results. First in Section 7.1,

we show that in the case of countably generated models whether or not there

is a perfect set of models is independent of the model of set theory we work

in. In Section 7.2 we show that for a topological space T with open sets O(T ),

the hyperdoctrine from which O(T )-valued sets are constructed is definable and

simple. From this we deduce that if T is countable and second countable then

Morley’s theorem holds for O(T )-valued sets. As the notion of countably gen-

erated for O(T )-valued sets in this paper and the notion of countably generated

for sheaves on O(T ) in [1] coincide this allows us to remove the determinacy

result from the main theorem in [1] (when T is countable and second countable).

2. Background

2.1. Logics

In this paper we only deal with finitary multi-sorted languages of which σ

and τ (and their variants) will always be instances. We denote the collection of

sorts of σ by Sσ, the collection of relation symbols in σ by Rσ and the collec-

tion of function symbols in σ by Fσ. Further, to simplify the presentation, we

will assume that the collection of sorts of any languages is closed under finite
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sequences2 and that the corresponding projection functions are always part of

the language.

We say a formula ϕ(x) is of type X if x is a variable3 of sort X. Similarly

we say a function f(x) is of type X → Y if x is a variable of sort X and f takes

values in the sort Y . Note that then empty sequence of sorts, 〈〉, is a sort and

as such we allow relations and functions with 〈〉 as their domain.

We denote by Modσ the category of σ structures (in the category of sets)

along with maps which preserve and reflect all (non-equality) relations and com-

mute with all functions. For any sentence ϕ in the language σ we let Modσ(ϕ)

be the full subcategory of Modσ consisting of those models which satisfy ϕ.

By Lκ,ω(σ) we mean the logic where we allow < κ sized disjunctions and

conjunctions along with finite quantification (see [5] for a more detained intro-

duction). We say a class K of models of σ is in PCκ(σ) if there is a language

σ∗ and a formula ϕ ∈ Lκ,ω(σ∗) such that σ ⊆ σ∗, |σ∗ − σ| < κ, and M ∈ K

if and only if [(∃M∗ ∈ Modσ(ϕ))M∗|σ = M and |M∗| = |M|]. We will let

L∞,ω(σ) =
⋃
κ∈ORD Lκ,ω(σ).

We say an equivalence relation on σ structures, ≡σ, is PCκ(σ) if there

is a language σ∗ such that σ∗ contains two disjoint copies σ0, σ1, of σ where

Sσ∗ = Sσ0
∪ Sσ1

, and there is a sentence ψ≡σ ∈ L∞,ω(σ∗) such that the follow-

ing are equivalent for models M0,M1 ∈ Modσ:

• M0 ≡σM1.

• (∃M∗ ∈ Modσ∗(ψ≡σ ))M∗|σ0
∼= M0 and M∗|σ1

∼= M1 (where these iso-

morphisms are under the association of σ0, σ1 with σ in the obvious way).

2This will allow us to treat X as a sort when X = 〈X1, · · · , Xn〉. This will make it possible

to (mostly) avoid dealing with sequences of sorts.
3If X = 〈X1, . . . , Xn〉 then a variable of type X is the same as a sequence of variables

(x1, . . . , xn) where xi is of type Xi.
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2.2. Set Theory

We begin this section with a brief discussion of notions from set theory which

will be important in this paper. We refer the reader to such standard texts as

[3] for any set theoretic results or definitions not explicitly discussed.

In this paper we use Zermelo-Fraenkel Set Theory with the Axiom of Choice

(ZFC) as our ambient theory and we will assume all results take place in a fixed

model of ZFC which we refer to as SET. In this paper κ (along with its variants)

will always be cardinals.

There are a few results of descriptive set theory which will be important

later. We mention them here:

Definition 2.1 ([4] Definition 16.5). Let σ = 〈Ri : i ∈ I〉 be a one sorted

countable relational language where Ri has arity ni. Let Modσ(N) =
∏
i∈I 2N

ni
.

We can view Modσ(N) as the space of models with underlying set N, the natural

numbers (with the obvious topology). As such there is a natural action of SN

(the permutation group of N) on Modσ(N).

If σ is a countable multi-sorted language then there is a one sorted language

σ1 which contains a relation symbol for each sort of σ and there is a sentence

φσ ∈ Lω1,ω(σ1) such that models of φσ represent models of σ in the obvious

way. In this context Modσ(N) then be the subset of Modσ1(N) consisting of

those elements satisfying φσ.

Theorem 2.2 ([4] Theorem 16.8). The SN invariant Borel subsets of Modσ(N)

are exactly those subsets of the form {x ∈ Modσ(N) : x |= ϕ} for some sentence

ϕ ∈ Lω1,ω(σ).

Corollary 2.3. For any PCω1 formula Φ, the set {x : x ∈ Modσ(N) and x |= Φ}

is a ΣΣΣ1
1 invariant subset of Modσ(N).

Proof. Φ is of the form (∃M∗ ∈ Modσ∗(N))M∗ |= ϕ and M∗|σ = M because

our definition of PCω1
bounds the size of the expansions we need to consider.

Corollary 2.4. For any PCω1
equivalence relation ≡, the set {(x, y) : x, y ∈

Modσ(N), x ≡ y} is a ΣΣΣ1
1 invariant subset of Modσ(N)×Modσ(N).
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Theorem 2.5 ([3] Theorem 32.9). If E is a ΣΣΣ1
1 equivalence relation on 2ω then

one of the following holds:

• There is a perfect set of reals in E-inequivalent reals in X.

• There are at most ℵ1 many E-inequivalent reals in X.

Further, whether there is a perfect set of E-inequivalent reals is absolute between

models of set theory.

Corollary 2.6. Suppose X is a ΣΣΣ1
2 subset of 2ω and E is a ΣΣΣ1

1 equivalence

relation on elements of 2ω. Then one of the following holds:

• There is a perfect set of reals in E-inequivalent reals in X.

• There are at most ℵ1 many E-inequivalent reals in X.

Proof. This follows in a straight forward way from an analysis of Theorem 25.19

of [3]. For a (slightly) more detailed explanation see [1] Proposition 2.12.

Corollary 2.7. Suppose σ is a countable language, ϕ ∈ Lω1,ω(σ) is a sentence

and ≡ is a PCω1
(σ) equivalence relation. Then one of the following holds:

• There is is a perfect set of reals each encoding a countable σ-structures

that models ϕ such that no two models are ≡-equivalent.

• There can be at most ℵ1 reals each encoding a countable σ-structures that

models ϕ such that no two models are ≡-equivalent.

Further which one is independent of the model of set theory we are working in.

Corollary 2.8. Suppose σ is a countable language, ϕ ∈ PCω1(σ) is a sentence

and ≡ is a PCω1
(σ) equivalence relation. Then one of the following holds:

• There is is a perfect set of reals each encoding a countable σ-structures

that models ϕ such that no two models are ≡-equivalent.

• There can be at most ℵ1 reals each encoding a countable σ-structures that

models ϕ such that no two models are ≡-equivalent.
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2.3. Category Theory

In this section we review some of the categorical notions which we will need.

For more information on the general category theory in this paper the reader is

referred to such standard texts as [6].

All categories in this paper will be locally small and we will use the conven-

tion that if C is a category with objects A and B, C[A,B] is the set of morphisms

whose domain is A and whose codomain is B. We also abuse notation by using

x ∈ C to mean x is an object of C and, when no confusion can arise, by using

SET to refer to the category of sets and functions in our ambient model SET

of ZFC.

We let Preorder be the partially order enriched category of preorders and

Heyting be the (non full) subcategory of Heyting prealgebras. For a definition

of these notions (as well as the important notion of a psuedofunctor) we refer

the reader to [11] Chapter 2.1.1. We will also assume that for each Heyting

prealgebra we have chosen a representative from each equivalence class.4

If HA is a Heyting prealgebra we will refer to >HA as a top element of

HA (i.e. >HA = sup{x : x ∈ HA}) and ⊥HA as a bottom element of HA (i.e.

⊥HA = inf{x : x ∈ HA}).

3. Hyperdoctrines

In this section we review the notion of a first order hyperdoctrine and the

partial equivalence relation construction. The partial equivalence relation con-

struction is important as every realizability topos over a PCA can be constructed

using the partial equivalence class construction applied to a certain hyperdoc-

trine. As most of the ideas in this section can be easily constructed from well

known results we refer the reader to the standard text [11] (especially Chapter

2) for a more thorough explanation of the concepts mentioned here.

4This will make statements like a ∧ b = c have meaning.
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3.1. Definitions and Internal Language

For the rest of the paper C will always be a category with finite products.

Further we will assume that a specific choice of products has been made (so

statements of the form X = X1 ×X2 are well defined).

Definition 3.1. A hyperdoctrine consists of a pair (C,H) where C is a cat-

egory with finite products and H is a contravariant psuedofunctor H : Cop →

Heyting from C into the category of Heyting prealgebras which satisfies:

• For each product projection πX : X × Y → X in C the functor H(πX) :

H(X) → H(X × Y ) has both a left adjoint (∃Y )X and a right adjoint

(∀Y )X in the category of preorders5.

For a more complete definition of a hyperdoctrine we refer the interested

reader to [10]. From now on (C,H) will always be a first order hyperdoctrine.

One can associate to (C,H) a language σH where

• For each object X ∈ C there is a sort XS of σH and where the sort

associated to 〈X1, . . . , Xn〉S = XS
1 × · · · ×XS

n .

• For each function f ∈ C[X,Y ] there is a function symbol Ff of type

XS → Y S .

• For each element Q ∈ H(X) there is a relation symbol RQ of type XS .

For each term t in this language we can associate a map [t]H in C by induc-

tion in the obvious way (where [Ff ]H = f). We can also give a interpretation

[ϕ]H of formulas ϕ(x) ∈ Lω,ω(σH)6 in the standard way7.

5It is worth stressing that we do not require (∀Y )X and (∃Y )X to be maps of Heyting

prealgebras, but only of preorders.
6In general we are not able to extend this interpretation to all of L∞,ω(σH) because we

have not assumed the Heyting prealgebras H(X) are complete (and in the case of realizability

toposes they usually won’t be).
7Notice that these are only unique up to isomorphism as H(X) is only a Heyting prealgebra

and not necessarily a Heyting algebra.
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We say that a sentence ϕ in this language is satisfied by a hyperdoctrine

(C,H), written (C,H) |= ϕ, if [ϕ]H ∼= >H(1C) (where 1C is a terminal object in

C).

We then have the following important result concerning hyperdoctrines

Theorem 3.2 (Soundness of Hyperdoctrines8 ([11] Theorem 2.1.6)). Suppose ϕ

is a sentence which is provable in first order intuitionistic logic without equality.

Then for every hyperdoctrine (C,H), (C,H) |= ϕ.

For a more thorough treatment see [11] Section 2.1.3.

3.2. Partial Equivalence Relation Construction

In this section we review the partial equivalence relation (PER) construction.

Hyperdoctrines are sound for intuitionistic first order logic without equality and

the PER construction is a way to allow us to interpret equality. In particular

the PER construction on a hyperdoctrine is one way in which we can construct

realizability toposes based on a PCA.

Definition 3.3. Given a hyperdoctrine (C,H) we define the category of par-

tial equivalence relations on (C,H), C[H], where

• The objects of C[H] are pairs (X,∼X) where

– X ∈ obj(C) and ∼X∈ H(X ×X).

– The following sentences9 are satisfied by (C,H):

∗ (∀x, x′ : X)(x ∼X x′)→ (x′ ∼X x).

∗ (∀x, x′, x” : X)(x ∼X x′) ∧ (x′ ∼X x”)→ (x ∼X x”).

• A morphism from (X,∼X) to (Y,∼Y ) is given by an F ∈ H(X × Y ) such

that the following sentences10 are satisfied by (C,H):

8There are other notions of hyperdoctrine than the one presented here and each notion

captures a fragment fragment of logic.
9These express in the internal language of (C,H) that ∼X is a partial equivalence relation.

10These express in the internal language of (C,H) that F respects the partial equivalence

relations ∼X and ∼Y and that F is single valued and total with respect to them.
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– (∀x : X)(∀y : X)F (x, y)→ (x ∼X x) ∧ (y ∼Y y).

– (∀x0, x1 : X)(∀y0, y1 : Y )(x0 ∼X x1) ∧ (y0 ∼Y y1) ∧ F (x0, y0) →

F (x1, y1).

– (∀x : X)(∀y0, y1 : Y )F (x, y0) ∧ F (x, y1)→ (y0 ∼Y y1).

– (∀x : X)(x ∼X x)→ (∃y : Y )F (x, y).

• The identity morphism on (X,∼X) is given by ∼X itself.

• Composition of F : (X,∼X)→ (Y,∼Y ) and G : (Y,∼Y )→ (Z,∼Z) is the

element [(∃y : Y )H[π1]F (x, y) ∧H[π2]G(y, z)] of H(X × Z) (where π1, π2

are the projections from X × Y ×Z onto X × Y and Y ×Z respectively.)

That composition is associative and that the indicated morphisms are iden-

tities follows from the soundness of hyperdoctrines for first order intuitionistic

logic.

It is not hard to show that C[H] will always be a Heyting category (for

a proof of this see [11] Theorem 2.2.1 along with the Remark immediately af-

terwards). Further, in many cases, like in the case of the construction of a

realizability topos on a PCA from a hyperdoctrine, the resulting category will

be a topos. But in this paper we will never need anything beyond the structure

of a Heyting category.

Lemma 3.4 ([10] Lemma 3.2). C[H] has finite products where:

• A terminal object of C[H] is (1C,>H(1C×1C)) where 1C is a terminal object

of C.

• A product for (X,∼X) and (Y,∼Y ) is given by (X × Y,∼X×Y ) where

(x, y) ∼X×Y (x′, y′)⇔ (x ∼X x′)∧ (y ∼Y y′) with the evident projections.

Lemma 3.5 ([10] Lemma 3.3). A function f : (X,∼X)→ (Y,∼Y ) is a monomor-

phism if and only if (C,H) |= (∀x, x′, y)F (x, y) ∧ F (x′, y)→ x ∼X x′

Definition 3.6. We say an element P ∈ H(Y ) strict on (Y,∼Y ) if

• (C,H) |= (∀y : Y )P (y)⇒ y ∼Y y.
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• (C,H) |= (∀y, y′ : Y )P (y) ∧ y ∼Y y′ ⇒ P (y′).

Lemma 3.7 ([10] p. 271). Every monomorphism m : (X,∼X) � (Y,∼Y )

is in the same subobject as one of the form (Y,≈) where x ≈ x′ ↔ (x ∼Y
x′∧Stm(x)) for a strict relation Stm. We say that Stm represents m. Further

there is a bijection between subobjects of (Y,∼Y ) and isomorphism classes of

strict relations.

The point of the previous three lemmas is that the properties of being a

product, of being a monomorphism and of being a strict relation all can be

described by first order formulas.

3.3. Models and Interpretations

An important feature of the partial equivalence relation construction is that

for each model M in C[H] and each formula ϕ ∈ Lω,ω(σ) of type X we can

associate a subobject {x : ϕ(x)}M of XM in a canonical way. Further this

subobject can be characterized in the internal language of (C,H). We reproduce

here the basic ideas which we will need. For a more thorough treatment see [11]

Chapter 2.

3.3.1. Models in C[H]

We now define the notion of a model in a category. For more information

on the notion of a model in a category we refer the reader to [8] or [7].

Definition 3.8. A σ-structure M in C[H] consist of:

• For every sort X ∈ Sσ an object XM of C[H] such that for every sequence

〈X1, . . . , Xn〉 of sorts 〈X1, . . . , Xn〉M = XM1 × · · · ×XMn and the 〈〉M =

1C[H] (a terminal object).

• For every function f ∈ Fσ of type X → Y we have a map in C[H],

fM : XM → YM.

• For every relation R ∈ Rσ of type X we have an subobject RM of XM.
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We let Strσ be the collection of σ structures in C[H].

Given a model M ∈ Strσ and a formula ϕ(x) ∈ Lω,ω(σ) of type X we can

define a subobject {x : ϕ(x)}M of XM in the standard way. From now on M

(and its variants) will always represent models in C[H].

Definition 3.9. Suppose that M0,M1 are σ-structures in C[H]. An isomor-

phism of models α :M0 →M1 is a set of maps 〈αX : X ∈ Sσ〉 such that:

• For each sort X ∈ Sσ, αX ∈ C[H][XM0 , XM1 ] is an isomorphism and for

any sequence X = 〈X1, . . . , Xn〉 we have αX = αX1
× · · · × αXn .

• For any function f ∈ Fσ with f : X → Y , αY ◦ fM0 = fM1 ◦ αX .

• For any relation R ∈ Rσ of type X and any monomorphism r in the

subobject RM0 , the subobject containing αX ◦ r is the same subobject as

RM1 .

We denote the existence of an isomorphism betweenM0 andM1 byM0
∼=M1.

We now observe that the notion that two models are isomorphic is definable.

More specifically we have the following:

Definition 3.10. Let σ0, σ1 be two disjoint copies of σ, let σiso = σ0 ∪ σ1 ∪

{αX : X0 → X1 for any X ∈ Sσ} ∪ {βX : X1 → X0 for X ∈ Sσ} and let

Thiso(σ) ⊆ Lω,ω(σiso) be the theory which says

• For each sort X ∈ Sσ

– (∀x : X1)αX ◦ βX(x) =X1 x.

– (∀x : X0)βX ◦ αX(x) =X0
x.

• For each function f : X → Y in Fσ:

– (∀x : X0)αY ◦ f0(x) =Y1 f1 ◦ βX(x).

– (∀x : X1)βY ◦ f1(x) =Y0
f0 ◦ αX(x).

• For each relation R of type X in Rσ:
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– (∀x : X0)R1(αX(x))↔ R0(x).

– (∀x : X1)R0(βX(x))↔ R1(x).

Proposition 3.11. For any two modelsM0,M1 of σ in C[H] the following are

equivalent:

• M0
∼=M1.

• There is a model I of Thiso(σ) where I|σ0
∼=M0 and I|σ1

∼=M1 (where

here the isomorphism is after associating σ0 and σ1 with σ in the obvious

way.)

Proof. This follows immediately from the soundness of hyperdoctrines for first

order logic .

This tells us that determining if two models are isomorphic can be reduced

to determining the existence of a model of a first order theory.

3.3.2. Interpretations

In this section we introduce the notion of an interpretation of a language in

a hyperdoctrine.

Definition 3.12. Suppose σ is a relational language. An interpretation, [·],

of σ in a hyperdoctrine (C,H) consists of the following:

• For each sort X ∈ Sσ an object [X] ∈ C where [〈X1, . . . , Xn〉] = [X1] ×

· · · × [Xn] 11.

• For each relation R ∈ Rσ of type X we assign an element [R] ∈ H([X]).

A morphism of interpretations f : [·]0 → [·]1 consists of a map fX : [X]0 →

[X]1 for each sortX such that for each relationR of typeX,H(fX)([R]1) = [R]0.

We will denote the category of interpretations on σ by Int(σ).

11In particular, we have [〈〉] is the empty product or a terminal object 1C.
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While the notion of morphism of interpretation will give us a notion of

isomorphism, there are times when it will be useful to have a stronger notion.

Definition 3.13. We say that two interpretations [·]0, [·]1 of σ are strongly

isomorphic if for every sort X ∈ Sσ, [X]0 = [X]1 and for every relation

R ∈ Rσ, [R]0 ∼= [R]1 in H([X]0). In this case we say [·]0 ∼=st [·]1.

We can extend an interpretation [·] to an assignment on Lω,ω(σ)12 which

takes a formula without equality, ϕ of type X, to an element [ϕ] ∈ H([X]). We

do this in the obvious way using the internal structure of the hyperdoctrine13.

We say that an interpretation satisfies a sentence ϕ, [·] |= ϕ, if [ϕ] ∼= >H(1C).

We will mainly care about interpretations only up to strong isomorphism.

Hence the following lemma will be very useful.

Lemma 3.14. For any formulas ψ0, ψ1 (without equality) of type X the follow-

ing are equivalent for any interpretation [·]

• [ψ0] ∼=st [ψ1]

• [·] |= (∀x : X)ψ0(x)↔ ψ1(x).

Proof. This follows from the fact that hyperdoctrines are sound for first order

logic.

The simplest example of an interpretation is the map [·]H (restricted to

the relations of the language σH). We can also define a restriction relation on

interpretations.

Definition 3.15. Suppose τ ⊆ σ are relational languages and [·] is an interpre-

tation of σ. We then define [·]|τ to be the interpretation of τ which agrees with

σ.

12If our underlying Heyting prealgebras are complete, we are able to extend this to all of

L∞,ω(σ).
13Notice that this assignment is only unique up to isomorphism in H([X]). As such we

consider the particular choice of [ϕ] as part of the structure of [·].
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Along with the notion of a restriction we have the notion of a conservative

expansion.

Definition 3.16. Suppose τ ⊆ σ and T ⊆ Lω,ω(τ) is a theory. A theory

T ∗ ⊆ Lω,ω(σ) is a conservative expansion (for interpretations) of T if

• For all [·] ∈ Int(σ), if [·] |= T ∗ then [·]|τ |= T .

• For all [·] ∈ Int(τ) with [·] |= T , there is an [·]∗ ∈ Int(σ) such that [·]∗ |= T ∗

and [·]∗|τ = [·].

• For all [·]0, [·]1 ∈ Int(σ), if [·]0, [·]1 |= ψ and [·]0|τ ∼=st [·]1|τ then [·]0 ∼=st [·]1.

In other words T ∗ is a conservative expansion of T if there is a map, ExT,T∗ ,

from interpretations of τ which satisfy T to interpretations of σ which satisfy T ∗

where ExT,T∗([·])|τ ∼=st [·] (i.e. ExT,T∗ is the inverse to the restriction relation

up to strong isomorphism).

The simplest example is the following (which will be important later).

Definition 3.17. Suppose σ is a relational language. We define the Morley-

ization of σ to consist of a language σMor defined by:

• Let σ0 = σ ∪ {R>, R⊥} where R>, R⊥ are relations on the empty sort 〈〉.

• Let σi+1 = σi ∪ {Rϕ : ϕ ∈ Lω,ω(σi)} where Rϕ is a relation of the same

type as ϕ.

• σMor =
⋃
i∈ω σi.

along with a theory Morσ ⊆ Lω,ω(σMor) consisting of:

• R> ↔ (∀x : X)> and R⊥ ↔ (∃x : X)⊥.

• For each relation Q ∈ Rσ of type X we have (∀x : X)RQ(x)↔ Q(x).

• If ϕ,ψ ∈ Lω,ω(σMor) are of type X then we have

– (∀x : X)Rϕ∧ψ(x)↔ [Rϕ(x) ∧Rψ(x)].

– (∀x : X)Rϕ∨ψ(x)↔ [Rϕ(x) ∨Rψ(x)].
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– (∀x : X)Rϕ→ψ(x)↔ [Rϕ(x)→ Rψ(x)].

• If ϕ ∈ Lω,ω(σMor) is of type 〈X,Y 〉 then we have

– (∀x : X)R(∃y:Y )ϕ(x,y) ↔ (∃y : Y )Rϕ(x, y).

– (∀x : X)R(∀y:Y )ϕ(x,y) ↔ (∀y : Y )Rϕ(x, y).

The following are then immediate.

Lemma 3.18. For ϕ ∈ Lω,ω(σMor) of type X, Morσ ` (∀x : X)ϕ(x)↔ Rϕ(x).

Lemma 3.19. For any theory T ⊆ Lω,ω(σ), then Morσ(T ) = Morσ ∪ {Rϕ :

ϕ ∈ T} is a conservative expansion (for interpretations) of T .

Lemma 3.20. If τ ⊆ σ then τMor ⊆ σMor and Morτ = Morσ ∩ Lω,ω(τMor).

The Morleyization of a language are important because, as we will see in

Proposition 4.23, we can define those interpretations (using models in SET)

which satisfy the Morleyization of a language.

3.3.3. Models in (C,H)

With the notion of an interpretation in hand we are ready to define the

notion of a model in a hyperdoctrine. The goal is to capture the structure of a

model in C[H] using the structure of the hyperdoctrine (C,H).

Definition 3.21. If σ is a language let σRel be the relational language where:

• SσRel = Sσ

• Rσ ⊆ RσRel .

• For every f ∈ Fσ of type X → Y there is a fg ∈ RσRel of type 〈X,Y 〉.

• For each sort X ∈ Sσ there is a relation ∼X∈ RσRel of type 〈X,X〉.

We define a model N of σ in a hyperdoctrine (C,H) to be an interpretation

[| · |]N ∈ Int(σRel) where:
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• For each sort X ∈ Sσ, ([|X|]N , [| ∼X |]N ) is an object in C[H] and for each

sequence of sorts 〈X1, . . . , Xn〉 we have ([|〈X1, . . . , Xn〉|]N , [| ∼〈X1,...,Xn〉

|]N ) ∼= ([|X1|]N , [| ∼X1
|]N )× · · · × ([|Xn|]N , [| ∼Xn |]N ).

• For each relation R ∈ Rσ of type X, [|R|]N ∈ H([|X|]N ) is a strict element

on ([|X|]N , [| ∼X |]N ) (and hence represents a subobject of ([|X|]N , [| ∼X
|]N )).

• For each function f ∈ Fσ of type X → Y the relation [|f |]N is a map in

C[H] from ([|X|]N , [| ∼X |]N ) to ([|Y |]N , [| ∼Y |]N ).

Notice by Lemma 3.4 and Lemma 3.5 there is a theory ThInt,σ ⊆ Lω,ω(σRel)

such that [| · |]N is an interpretation associated to a model if and only if [| · |]N |=

ThInt,σ. From now on N (and its variants) will always represent models in

(C,H) with corresponding interpretation [||]N .

If τ ⊆ σ and N is a model of σ in (C,H) we can define N|τ to be the model

of τ such that [| · |]N|τ = [| · |]N |τRel (i.e. the interpretation associated with N|τ
agrees with the interpretation associated to N on τRel)

There is a close relationship between σ structures in C[H] and models of σ

in (C,H). This is given by the following.

Definition 3.22. For each model N of σ in (C,H) there is a σ structure p(N )

in C[H] where

• For each sort X ∈ Sσ the object Xp(N ) = ([|X|]N , [| ∼X |]N ).

• For each relation R ∈ Rσ, Rp(N ) is the subobject associated to [|R|]N (i.e.

if Stm ∼= [|R|]N then Rp(N ) is the subobject containing m).

• For each function f ∈ Fσ, fp(N ) = [|f |]N .

Definition 3.23. For each σ structureM in C[H] there is a model of σ, q(M),

in (C,H) where:

• For each sort X ∈ Sσ, if XM = (A,EA) then [|X|]q(M) = A and [| ∼X
|]q(M) = EA.
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• For each relation R ∈ Rσ we have [|R|]q(M) is a strict relation which

represents the subobject RM.

• For each function f ∈ Fσ we have fM = [|f |]q(M).

The following is then immediate.

Proposition 3.24. (1) For every M∈ Strσ we have M = p(q(M)).

(2) For every model N of σ in (C,H) we have N ∼=st q(p(N )).

(3) For all model N0,N1 of σ in (C,H), [| · |]N0
∼=st [| · |]N1 if and only if

p(N0) = p(N1).

Proof. This follows immediately from the definition and Lemma 3.7.

Proposition 3.24 says that there is a bijection between σ structures in C[H]

and strong isomorphism classes of models of σ in (C,H).

This bijection between σ structures in C[H] and strong isomorphism classes

of models of σ in (C,H) goes even further and (in some sense) preserves formulas.

Proposition 3.25. For every formula ϕ ∈ Lω,ω(σ) of sort X there is a for-

mula ϕ̂ ∈ Lω,ω(σRel) of sort X such that for any σ structure M in C[H]

we have [|ϕ̂|]q(M) ∈ H(XM) is a strict relation which represents the subobject

{x : ϕ(x)}M of XM.

Proof. We will only give the definition of ϕ̂ (by induction) and we leave it to the

reader to check that [|ϕ̂|]q(M) has the desired properties. For a more detailed

proof we refer the reader to [11] Chapter 2.2.

First for each function symbol F in Fσ we let F̂ be the relation Fg ∈ RσRel
and for each pair of function symbols F and G of σ where F is of type X → Y

and G is of type Y → Z we let Ĝ ◦ F be the formula (∃y : Y )F (x, y) ∧G(y, z).

In this way we can define, by induction, for each term t in σ of type X → Y , a

formula t̂ of type 〈X,Y 〉.

• For each sort X ∈ Sσ we let ̂(x =X y) be ∼X (x, y).
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• If R ∈ Rσ is of type Y and t is a term of type X → Y then R̂(t(x)) is

(∃y : Y )t̂(x, y) ∧R(y).

• If F,G are terms of type X → Y . Then F̂ = G is (∃y : Y )(F̂ (x, y) ∧

Ĝ(x, y))

• If ϕ and ψ are formulas of type X then

– ϕ̂ ∧ ψ(x) is ϕ̂(x) ∧ ψ̂(x)

– ϕ̂ ∨ ψ(x) is ϕ̂(x) ∨ ψ̂(x)

– ϕ̂⇒ ψ(x) is ϕ̂(x)→ ψ̂(x) ∧ x ∼X x.

• If ϕ(x1, . . . , xn) is a formula of type 〈X1, . . . , Xn〉 then

– (̂∃xi)ϕ(x1, . . . , xn) is (∃xi : Xi)ϕ̂(x1, . . . , xn)

– (̂∀xi)ϕ(x1, . . . , xn) is (
∧
j≤n,j 6=i xj ∼Xj xj) ∧ (∀xi : Xi)(xi ∼Xi xi →

ϕ̂(x1, . . . , xn)).

For a theory T ⊆ Lω,ω(σ) we define T̂ = {ϕ̂ : ϕ ∈ T} ⊆ Lω,ω(σRel). In

particular we have:

Corollary 3.26. For every theory T ∈ Lω,ω(σ) there is a theory T̂ ∈ Lω,ω(σRel)

such that for all σ structures M in C[H] the following are equivalent:

• M |= T .

• [|ϕ̂|]p(M) = >H(1C) for all ϕ ∈ T .

Corollary 3.26 reduces the problem of deciding whether a σ structure in

C[H] satisfies a sentence of Lω,ω(σ) to deciding whether a model of σ in (C,H)

satisfies a (closely) related sentence. Hence this reduces the job of counting the

number of σ structures in C[H] which satisfy a theory to the job of counting the

number of interpretations of σ in (C,H) which satisfy a (closely related) theory.
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4. Definability

In this section we give the extra structure we will need to place on a hy-

perdoctrine in order to be able to characterize, using models in SET, those

collections of interpretations satisfying a theory.

4.1. Definable Hyperdoctrines

The notion of a definable hyperdoctrine was chosen to serve two purposes.

First the definition was chosen to allow us to describe interpretations in SET[H]

via models in SET. Second, the definition was chosen so that many of the

examples of hyperdoctrines which arise naturally in the study of realizability

(including those associated to realizability toposes over PCAs) are definable.

Definition 4.1. We say a psuedofunctor H : SETop → Preorder is definable

if there exists:

• Sets AH, EH, SH.

• A partial function14 OH : EH×AH → AH along with an element id ∈ EH.

• A set PH = 〈pi : i ∈ I〉 of conditions where

– pi = 〈Bpi , Dpi〉 and Bpi , Dpi ⊆ AH.

• A set ΣH ⊆ P(A)15.

such that

(i) SH ⊆ P(AH).

(ii) ΣH is the collection of subsets B of AH satisfying:

– For some J ⊆ SH, B =
⋃
J .

– For all pi, if Bpi ⊆ B then Dpi ⊆ B.

14We will use the standard notation OH(e, a) ↓ to mean (∃b)OH(e, a) = b and OH(e, a) ↑

to mean ¬OH(e, a) ↓.
15P(A) is the powerset of A.
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(iii) ∅, AH ∈ ΣH (i.e. the empty set and the total set are in ΣH).

(iv) (∀a ∈ AH)OH(id, a) = a.

(v) For any X ∈ SET, H(X) is the preorder (SET[X,ΣH],≤H(X)) where

α ≤H(X) β if and only if

(∃e ∈ E)(∀x ∈ X)(∀a ∈ α(x))OH(e, a) ↓ ∧OH(e, a) ∈ β(x).

(vi) For f : X → Y a function between sets, H(f) : SET[Y,Σ]→ SET[X,Σ] is

precomposition with f . I.e. H(f)(α) = α ◦ f for any α ∈ SET[Y,Σ].

Notice that H is completely determined by the sets AH, EH, SH, PH and

OH and any such sets satisfying the above determine a psudofunctor. How-

ever, for an arbitrary collection of AH, EH, SH, PH and OH the corresponding

psudofuctore might not be a hyperdoctrine.

Definition 4.2. We say H : SETop → Heyting is a definable hyperdoctrine

if (SET,H) is a first order hyperdoctrine and the composition of H with the

inclusion functor from Heyting to Preorder is a definable psuedofunctor.

The idea behind AH, EH, SH, OH and PH are as follows. By (v) of Definition

4.1, in order to define our psudofunctor all we need is to determine ΣH ⊆ P(AH)

and ≤H(X). We want to define ΣH so that there is a collection, SH, of subsets

of AH where every element of ΣH is a union of these subsets. However, it turns

out that in some circumstances (see Example 4.6 and Example 4.8) we don’t

want to allow arbitrary unions. Rather we want to allow arbitrary unions sub-

ject to some conditions. In particular the conditions which we will require will

always be of the form “If every element of Bp is in our set then so must be every

element of Dp”.

This then just leaves the definition of the ordering ≤H(X). We want to think

of EH as a collection of transformations of AH (via OH). For α, β ∈ H(X) we

say α ≤H(X) β if there is a single transformation e ∈ EH such that for all x ∈ X,

e transforms all elements of α(x) to elements of β(x).
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Before we move onto several examples there is one more notion we need. We

say that an definable hyperdoctrine (SETop,H) is κ-presentable if |AH|, |EH|, |SH|

and |PH| ≤ κ. We call an ℵ0-presentable definable hyperdoctrines, countably

presentable. From now on we will let C = SET and (SET,H) will be a defin-

able κH-presentable hyperdoctrines.

4.1.1. Examples of Definable Hyperdoctrines

In this section we show that several well known examples of first order hy-

perdoctrines associated with realizability are all definable. We will begin by

reviewing the definition the hyperdoctrine associated to a realizability topos

over a PCA and then giving the structure that witnesses that it is definable.

As the main focus of this paper is realizability toposes over PCAs, for the

other examples of definable hyperdoctrines we will simply give the structure

that witnesses the hyperdoctines are definable and refer the reader to [11] for

the definitions of the hyperdocrines (and a proof that they are hyperdoctrines).

Also, as it is routine to check that the below structures actually witness that

our hyperdoctrines are definable, we leave their verification to the enthusiastic

reader.

Example 4.3 (Realizability over a PCA). Suppose (A, ·) is a partial combina-

torial algebra and let RH(A) be the hyperdoctrine on SET given by

• RH(A)(X) = (SET[X,P(A)],≤X) where α ≤X β if and only if (∃a ∈

A)(∀x ∈ X)(∀b ∈ α(x))a · b ↓ and a · b ∈ β(x).

• For a map of sets f : X → Y , RH(A)(f)(x) = x ◦ f .

This is the hyperdoctrine where SET[RH(A)] = RT(A), the realizability topos

on A.

RH(A) is then definable with:

• ARH(A) = ERH(A) = A and ORH(A)(a, b) ' a · b16.

16Here ' is the relation where either both sides are undefined or both sides exist and are

equal.
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• SRH(A) = {{a} : a ∈ A} and PRH(A) = ∅.

For a more thorough introduction to this hyperdoctrine see [10].

Example 4.4 (Relative Realizability). Suppose (A, ·) is a PCA and (A#, ·) is

an elementary sub-PCA. Let RR(A#, A) be the hyperdoctrine constructed from

A and A# (see [11] Chapter 2.6.9 for the definition). RR(A) is then definable

with:

• ARR(A#,A) = A, ERR(A#,A) = A# and ORR(A#,A)(a, b) ' a · b.

• SRR(A#,A) = {{a} : a ∈ A} and PRR(A) = ∅.

Example 4.5 (Realizability over Ordered PCAs). Suppose (A, ·,≤A) is an or-

dered PCA. Let OH(A) be the hyperdoctrine constructed from A (See [11] Chap-

ter 2.6.2). OH(A) is then definable with:

• AOH(A) = EOH(A) = A and OOH(A)(a, b) ' a · b.

• SOH(A) = {{b : b ≤A a} : a ∈ A} and POH(A) = ∅.

Notice, because of how SOH(A) is defined, ΣOH(A) is the collection of downward

closed sets.

Example 4.6 (Extensional Realizability). Let ER be the hyperdoctrine con-

structed for extensional realizability (See [11] Chapter 2.6.6). ER is then defin-

able with:

• AER = {(x, y) : x, y ∈ N}, EER = N and ORR(e, (x, y)) ' ({e}(x), {e}(y))17.

• SER = {{(x, y)} : (x, y) ∈ A}.

• PER = Pref ∪ Psym ∪ Ptran where:

– Pref = {〈Bref (x, y), Dref (x, y)〉 : x, y ∈ N} where Bref (x, y) =

{(x, y)} and Dref (x, y) = {(x, x), (y, y)}.

17{e}(x) is the value of the eth computer run on x. Also ({e}(x), {e}(y)) is defined if and

only if both {e}(x) ↓ and {e}(y) ↓.
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– Psym = {〈Bsym(x, y), Dsym(x, y)〉 : x, y ∈ N} where Bsym(x, y) =

{(x, y)} and Dsym(x, y) = {(y, x)}.

– Ptran = {〈Btran(x, y, z), Dtran(x, y, z)〉 : x, y, z ∈ N} where Btran(x, y, z) =

{(x, y), (y, z)} and Dtran(x, y) = {(x, z)}.

In particular, these conditions guarantee the elements of E ∈ ΣER are exactly

the equivalence relations on some subsets of N (the specific subset is {x : (x, x) ∈

E} ⊆ N).

Example 4.7 (Modified Realizability). Let MR be the hyperdoctrine constructed

for modified realizability (See [11] Chapter 2.6.7). MR is then definable with:

• AMR = {(n, 0), (n, 1) : n ∈ N}, EMR = N and OMR(e, (n, i)) ' ({e}(n), i).

• SMR = {(n, 1) : n ∈ N} ∪ {(n, 0), (n, 1) : n ∈ N} and PMR = ∅.

In particular ΣMR consists of exactly those subsets B ⊆ N × 2 where if B0 =

{(n, 0) ∈ B : n ∈ N} and B1 = {(n, 1) ∈ B : n ∈ N} then B0 ⊆ B1. In this way

there is a canonical bijection between ΣMR and Σ2 from [11] Chapter 2.6.7.

Example 4.8 (Lifschitz Realizability). Let LR be the hyperdoctrine constructed

for Lifschitz realizability (See [11] Chapter 2.6.8). LR is then definable with:

• ALR = J , ELR = N and OLR(e, n) ' {e}(n).

• SLR = {{j} : j ∈ J}.

• PLR = P(i) ∪ P(ii) where

– P(i) = {〈{e}, {f}〉 : e, f ∈ J and Vf ⊆ Ve}.

– P(ii) = {〈{e, f}, {g}〉 : e, f, g ∈ J and Ve ∪ Vf = Vg}.

4.2. Characterizing Interpretations by Models in SET

Definition 4.9. Let σDS = {DS} ∪ {A,E, S,O} ∪ {ca : a ∈ AH} ∪ {ce : e ∈

EH} ∪ {cs : s ∈ SH} where DS is (the only) sort, A,E, S are unary relations, O

is a relation of arity three and each ca, ce, cs are constants.

We then let TDS ∈ Lκ+
H,ω

(σDS) be the theory which says

25



• (∀x : DS)A(x) ∨ E(x) ∨ S(x).

• (∀x : DS)S(x)↔ (¬A(x) ∧ ¬E(x)).

• (∀x : DS)A(x)↔
∨
a∈AH(x = ca).

• (∀x : DS)E(x)↔
∨
e∈EH(x = ce).

• (∀x : DS)S(x)↔
∨
s∈SH(x = cs).

•
∧
{O(ce, ca, cb) : OH(e, a) ↓ and OH(e, a) = b}.

•
∧
{¬O(ce, ca, cb) : OH(e, a) ↑ or [OH(e, a) ↓ and OH(e, a) 6= b]}.

The theory TDS has names for each element of AH, EH and SH and captures

the action of EH on AH. Further TDS has a unique model up to isomorphism.

We now show how to characterize an interpretation.

Definition 4.10. If σR is a language with a single relation R of type X let

L(σR) = σDS∪{HX : X ∈ Sσ}∪{i〈X1,...,Xn〉 : H〈X1,...,Xn〉 → HX1
×· · ·×HXn}∪

{RS , RA} where the HX ’s are sorts and RA, RS are relations on HX ×DS. We

then let T (σR) be the theory which says:

(i) TDS.

(ii) i〈X1,...,Xn〉 is an isomorphism for all {X1, · · · , Xn} ⊆ Sσ.

(iii) (∀x ∈ HX)(∀a ∈ DS)RA(x, a)→ A(a).

(iv) (∀x ∈ HX)(∀s ∈ DS)RS(x, s)→ S(s).

(v) (∀x ∈ HX)
∧
a∈AH RA(x, ca)→

∨
a∈s∈SH RS(x, s).

(vi) (∀x ∈ HX)
∧
s∈SH RS(x, cs)↔ [

∧
a∈SH RA(x, ca)].

(vii) For each p ∈ P , (∀x ∈ HX)[
∧
a∈Bp RA(x, ca)]→ [

∧
a∈Dp RA(x, ca)].

Notice T (σR) ∈ Lκ+,ω(L(σR)).
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A model U of T (σR) gives an interpretation [·]U of σR in the following way.

First, by (ii) we can associate every sort of the form H〈X1,...,Xn〉 with HX1
×

· · · ×HXn in a canonical way (which we will do from now on without mention).

We then let [X]U = HUX for every sort X and for each x ∈ [X]U we let [R]U (x) =

{a : U |= RA(x, ca)} ⊆ A. It then follows immediately from Definition 4.1 that

for each x ∈ X, [R]U (x) ∈ ΣH and so [R]U ∈ H(X). Under this association we

also have U |= RS(x, s) if and only if s ⊆ [R]U (x). In particular this means if

two models of T (σR) have the same restriction to T (σR − {RS}) then they are

actually the same model.

Definition 4.11. Let σ be a relational language. For each relation R ∈ Rσ
of type X let σR be the relational language with the same sorts as σ and

the single relation R of type X18. Let L(σ) =
⋃
{L(σR) : R ∈ Rσ} and let

T (σ) =
⋃
{T (σR) : R ∈ Rσ}.

From now on U (and its variants) will always represent models in SET which

satisfy a theory T (σ).

Proposition 4.12. There is an isomorphism of categories hσ : ModL(σ)(T (σ))→

Int(σ) with inverse jσ : Int(σ) → ModL(σ)(T (σ)). Further if X ∈ Sσ then for

each model U of T (σ) if [·]U = hσ(U) then HUX = [X]U .

Proof. For each U |= T (σ) we define an interpretation [·]U as follows:

• For each sort X ∈ Sσ we let [X]U = HUX .

• For any relation R ∈ Rσ of type X we let [R]U : HUX → P(AH) where

[R]U (x) = {a ∈ AH :M |= RA(x, ca)}.

By conditions (v), (vi) of Definition 4.9 for each x ∈ X, [R]U (x) =
⋃
{s : s ∈

SH and U |= SR(x, cs)}. Further, by condition (vii) of Definition 4.9 [R]U (x)

satisfies all of the conditions in PH and hence [R]U (x) ∈ ΣH. In particular this

means [R]U ∈ H([X]U ) and so [·]U is an interpretation. We let hσ(U) = [·]U .

18Notice that if R 6= R′ then σR ∩ σR′ = SσR = SσR′ .
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Now suppose f ∈ Modσ[U0,U1] (where U0,U1 |= T (σ)) and let fX : HU0X →

HU1X be the corresponding map of sort X. Further suppose R ∈ Rσ is of type

X. Then for all a ∈ AH and for all x ∈ HU0

X , we have U0 |= RA(x, ca) ⇔

U1 |= RA(fX(x), ca). Hence for all x ∈ X, H(fX)([R]U1)(x) = {a : U |=

RA(x, ca)} = [R]U0(x) and so H(fX)([R]U1) = [R]U0 . But this then means that

〈fX : X ∈ Sσ〉 ∈ Int(hσ(U0), hσ(U1)].

In the other direction if [·] is an interpretation of σ let jσ([·]) = U[·] be the

model of L(σ) where:

• For every sort X ∈ Sσ, H
U[·]
X = [X].

• For every relation R ∈ Rσ, U[·] |= RA(x, ca) if and only if a ∈ [R](x) and

U[·] |= RS(x, cs) if and only if s ⊆ [R](x).

It is then immediate from the definition of T (σ) that U[·] |= T (σ). Further it is

immediate that if f : [·]0 → [·]1 then f extends to a map from jσ([·]0) to jσ([·]1)

in the obvious way.

It then easy to check that hσ and jσ are inverse functors and hence witness

the isomorphism of the two categories.

From now for U ∈ Modσ(T (σ)) we will let [·]U = hσ(U). From the above

argument it is also immediate that the isomorphism of categories between Int(σ)

and ModL(σ)(T (σ)) commutes with restriction.

Corollary 4.13. If τ ⊆ σ and U |= T (σ) then [·]U |τ = [·]U|L(τ)

4.3. Definability of the Hyperdoctrine Structure

Now that we have a way of associating to each interpretation of σ a model

of L(σ) in SET, the next step will be to define subsets of interpretations on σ

using formulas in L∞,ω(L(σ)). This suggests the following definition.

Definition 4.14. Suppose V is a collection of interpretations of σ. We say a

formula ϕ ∈ L∞,ω(L(σ)) defines V if

• ModL(σ)(ϕ) ⊆ ModL(σ)(T (σ)).
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• For all models U of T (σ), U |= ϕ if and only if hσ(U) ∈ V .

The idea is that a formula ϕ defines V if the models of ϕ are exactly those

models which correspond, under hσ, to interpretations in V .

Definition 4.15. We say a formula ϕ ∈ L∞,ω(L(σ)) of type 〈X,DS〉 defines a

relation on X if for every U |= T (σ) there is a model U ′ |= T (σ ∪ {R}) (where

R is a new relation of type 〈X,DS〉) such that:

• U ′ |= (∀x : HX)(∀a : DS)R(x, a)↔ ϕ(x, a)

• U ′|L(σ) = U .

We will abuse notation and let [ϕ]U ∈ H([X]U ) where [ϕ]U (x) = {a : U |=

RA(x, ca)}.

When we have a formula which defines a relation, we would like to simply

add in a new relation equivalent to the formula and the look at the collection of

those interpretations defined by that new theory. However this runs into a slight

problem in that this collection will not be closed under strong isomorphism (as

the formula only defines a single element of H([X]U )). Fortunately we can fix

this.

Definition 4.16. If ϕ defines a relation let Cl(σ, ϕ,R) be the theory extending

T (σ) which says:

•
∨
e∈E(∀x : X)(∀a : DS)R(x, a)→ (∃b : DS)O(e, a, b) ∧ ϕ(x, b)

•
∨
f∈E(∀x : X)(∀a : DS)ϕ(x, a)→ (∃b : DS)O(f, a, b) ∧R(x, b)

Let V (σ, ϕ,R) = {[·] : jσ([·]) |= Cl(σ, ϕ,R)}.

Lemma 4.17. V (σ, ϕ,R) is closed under strong isomorphism and Cl(σ, ϕ,R)

defines V (σ, ϕ,R).

Proof. This follows because Cl(σ, ϕ,R) says that for any model U , [R]U ≤ [ϕ]U

and [ϕ]U ≤ [R]U .
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The first (and easiest) examples of collections of interpretations which we

can define are the following.

Definition 4.18. Let F>, F⊥ be formulas of type 〈X,DS〉 where F>(x, a) ⇔

A(a) and F⊥(x, a)↔ ⊥.19

That F>, F⊥ define relations on X follows immediately from the fact that

∅, AH ∈ ΣH. We then also have:

Lemma 4.19. If T>(σ,R) = Cl(σ, F>, R) and T⊥(σ,R) = Cl(σ, F⊥, R) then

• T>(σ,R) defines {[·] : [·] |= (∀x : X)R(x)↔ >}.

• T⊥(σ,R) defines {[·] : [·] |= (∀x : X)R(x)↔ ⊥}.

Proof. This is because V (σ, F>, R) = {[·] : [·] |= [R] ∼=st >H(X)} and V (σ, F⊥, R) =

{[·] : [·][R] ∼=st ⊥H(X)}.

Next we show we can define ≤.

Definition 4.20. Let R0, R1 ∈ Rσ be relations of type X and let T≤(σ,R0, R1)

be the theory extending T (σ) which says

•
∨
e∈E(∀x : HX)(∀a : DS)R0

A(x, a)→ (∃a′ : DS)O(ce, a, a
′) ∧R1

A(x, a′).

Lemma 4.21. T≤(σ,R0, R1) defines {[·] : [R0] ≤ [R1]}.

Proof. This is immediate from the definition ≤ in definable hyperdoctrines.

4.4. Simple definable Hyperdoctrines

Unfortunately being a definable hyperdoctrine does not guarantee enough

structure to define all of the internal operations of a hyperdoctrine using formu-

las of L∞,ω. In this section we define the notion of a simple definable hyperdoc-

trine (i.e. one which does have enough structure) and we show that in the case

of realizability toposes over PCAs the corresponding hyperdoctrines are simple.

19I.e. it never holds
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Definition 4.22. We say a κ-presentable definable hyperdoctrine H is simple

if there are sentences of Lκ+,ω where:.

(∧) T∧(σ,R0, R1, R
∗) defines {[·] : [·] |= (∀x : X)R∗(x)↔ R0(x) ∧R1(x)}.

(∨) T∨(σ,R0, R1, R
∗) defines {[·] : [·] |= (∀x : X)R∗(x)↔ R0(x) ∨R1(x)}.

(→) T→(σ,R0, R1, R
∗) defines {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x)→ R1(x)]}.

(∃X) T(∃Y )(σ,R0, R
∗) defines {[·] : [·] |= (∀x : X)R∗(x)↔ [(∃y : Y )R0(x, y)]}.

(∀X) T(∀Y )(σ,R0, R
∗) defines {[·] : [·] |= (∀x : X)R∗(x)↔ [(∀y : Y )R0(x, y)]}.

From now on (SET,H) will always be a simple definable hyperdoctrine. The

following is the most important result of Section 4. It tells us that in simple

definable hyperdoctrines we can define those interpretations which satisfy a

given sentence.

Lemma 4.23. Let σ be a relational language. Then the collection of interpre-

tations of σMor which satisfy Morσ is definable by a Lκ+
H,ω

(L(σMor)) sentence.

Proof. Let ThσMor say:

• T>(σMor, R>) and T⊥(σMor, R⊥).

• T≤(σMor, Q,RQ) and T≤(σMor, RQ, Q) for every relation Q ∈ RσRel .

• For every pair of formulas ψ0, ψ1 of type X in Morσ:

– T∧(σMor, Rψ0 , Rψ1 , Rψ0∧ψ1).

– T∨(σMor, Rψ0 , Rψ1 , Rψ0∨ψ1).

– T→(σMor, Rψ0
, Rψ1

, Rψ0→ψ1
).

• For every formulas ψ of type 〈X,Y 〉 in Morσ:

– T∃X(σMor, Rψ, R(∃x:X)ψ).

– T∀X(σMor, Rψ, R(∀x:X)ψ).

31



Now by Lemma 4.21, Lemma 4.19 and Definition 4.22 we see ThσMor classifies⋂
ϕ∈Morσ

{[·] : [·] |= ϕ} = {[·] : [·] |= Morσ}.

Corollary 4.24. For each T ⊆ Lω,ω(σ) there is a theory ThσMor(T ) ∈ Lκ+
H,ω

(L(σMor))

which defines {[·] : [·] |= Morσ ∪ T}

Proof. We let ThσMor(T ) = ThσMor ∪ {T>(σ,Rϕ) : ϕ ∈ T}.

4.4.1. Examples

Not surprisingly many of the examples in Section 4.1.1 turn out to be sim-

ple. However as we will only focus on realizability toposes over a PCA we will

prove the hyperdoctrines RH(A) are simple and leave the other examples to the

enthusiastic reader.

Before we begin recall that in any PCA, (A, ·), there are elements m,m1,m2

such that (a, a′) 7→ (m ·a) ·a′ is an injection with left inverse a 7→ (m1 ·a,m2 ·a).

Also recall (or see [10] p. 268)

Lemma 4.25. For Φ0,Φ1 ∈ H(X),

• Φ0 ∧ Φ1
∼=st λx ∈ X.{(m · a) · a′ : a ∈ Φ0(x) ∧ a′ ∈ Φ1(x)}

• Φ0 ∨Φ1
∼=st λx ∈ X.{(m ·m1) ·a : a ∈ Φ0(x)}∪{(m ·m2) ·a′ : a′ ∈ Φ1(x)}

• Φ0 → Φ1
∼=st λx ∈ X.{a : (∀b ∈ Φ0(x))a · b ↓ and a · b ∈ Φ1(x)}

and for Φ ∈ H(X × Y )

• (∃Y )XΦ ∼=st λx ∈ X.
⋃
y∈Y Φ(x, y)

• (∀Y )XΦ ∼=st λx ∈ X.
⋂
y∈Y Φ(x, y)

Example 4.26. For R0, R1 ∈ Rσ of type X we define the following formulas:

• D∧(R0, R1)(x, a) is the formula of type 〈HX ,DS〉 equivalent to:

(∃b, b′, b” : DS)[O(m, b, b′) ∧O(b′, b”, a)] ∧R0
A(x, b) ∧R1

A(x, b”)
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• D→(R0, R1)(x, a) is the formula of type 〈HX ,DS〉 equivalent to:

(∃b, b′ : DS)[R0
A(x, b) ∧O(m,m1, b

′) ∧O(b′, b, a)]∨

[R1
A(x, a′) ∧O(m,m2, a”) ∧O(a”, a′, a)]

• D→(R0, R1)(x, a) is the formula of type 〈HX ,DS〉 which is equivalent to:

(∀b : DS)R0
A(x, b)→ (∃b′ : DS)O(a, b, b′) ∧R1

A(x, b′)

and for R ∈ Rσ of type 〈X,Y 〉 we define the following formulas:

• D(∃Y )(R)(x, a) is the formula of type 〈H〈X,Y 〉,DS〉 equivalent to (∃y :

Y )AR(x, y, a)

• D(∀Y )(R)(x, a) is the formula of type 〈H〈X,Y 〉,DS〉 equivalent to (∀y :

Y )AR(x, y, a)

The following lemma is then immediate as all of these functions were designed

to capture the corresponding operations from Lemma 4.25.

Lemma 4.27. We have

• V (σ,D∧(R0, R1), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x) ∧R1(x)]}

• V (σ,D∨(R0, R1), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x) ∨R1(x)]}

• V (σ,D→(R0, R1), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x)→ R1(x)]}

• V (σ,D(∃X)(R), R∗) = {[·] : [·] |= (∀y : Y )R∗(y)↔ (∃x : X)R(x, y)}

• V (σ,D(∀X)(R), R∗) = {[·] : [·] |= (∀y : Y )R∗(y)↔ (∀x : X)R(x, y)}

Corollary 4.28. RH(A) is a simple hyperdoctrine.

Proof. This follows immediately from 4.17.
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5. Size of Objects

5.1. Size Of The Underlying Set

Looking at the construction of SET[H] from (SET,H) we see that a natural

candidate for the notion of the size of an object (X,∼X) is just the size of X.

Unfortunately this notion of size has the serious drawback that not only is it not

closed under isomorphism, but for every (X,∼X) there are isomorphic objects

with arbitrarily large underlying sets.

Lemma 5.1. Suppose (X,∼X) ∈ SET[H]. Then for each set κ there is an

object (X × κ,∼∗κ) which is isomorphic to (X,∼X).

Proof. Let ∼∗κ (〈x, i〉, 〈x′, j〉) =∼X (x, x′). Then functions F (〈x, i〉, y) =∼X
(x, y) and G(y, 〈x, i〉) =∼X (y, x) are then easily seen to be inverses of each

other.

This leads to the following definition.

Definition 5.2. We say (X,∼X) ∈ SET[H] is κ-generated if there is an

(X ′,∼X′) such that |X ′| = κ and (X,∼X) ∼= (X ′,∼X′). We say (X,∼) is

countably generated if it is ℵ0-generated.

As we will see, being countably generated turns out to be a very natural no-

tion from the point of view of descriptive set theory. It is also worth mentioning

that if an object is κ generated it is also κ′ generated for all κ′ ≥ κ (by Lemma

5.1).

Of course the natural example of an object we would hope would be count-

ably generated is the natural number object in SET[H]. And, at least in the

case of realizability toposes over PCAs this is the case.

Lemma 5.3. Suppose (A, ·) is a PCA and NA is a natural number object in

RT(A). Then NA is countably generated.

Proof. Let {n : n ∈ N} be the Curry numerals in A. Then (N,∼A) is a natural

number object where ∼A (n,m) = {n : n = m} (see [11] p. 268).
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5.2. Relative Size

Our second notion of size is a relative one. Instead of determining the size

of an object outright we will instead say when the size of one object is “bound”

by the size of another. In this way, if we have an object which is in some sense

canonically countable (like say the natural number object) then we can think of

all those objects whose size is bound by it as also being countable.

Definition 5.4. Suppose A ∈ C[H]. We say an object B ∈ C[H] is monic

bounded by A if there is a monomorphism m : B → A in C[H].

Lemma 5.5. If A ∈ SET[H] is κ-generated and B ∈ SET[H] is monic bounded

by A then B is κ-generated.

Proof. This follows immediately from Lemma 3.7.

A disadvantage the notion of monic bounded has over the notion of begin

κ-generated is that the size of an object is no longer a cardinal. However an

advantage of the notion of monic bounded is that it is closed under equivalences

of categories (whereas being κ-generated is not).

We end this section with the observation that we could have used epimor-

phisms to compare the size of objects and obtained a similar notion of A being

epi bound by B (i.e. there is an epimorphism from B to A). However we do not

consider this notion here as there is no (obvious) way to guarantee an object

which is epi bound by a countably generated object will be countably gener-

ated (and the techniques used in this paper to count the number of countable

models of a theory only work if the models we are looking at are all countably

generated).

6. Number of Countable Models

We are now, finally, ready to prove the main results of this paper.
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6.1. Countably Generated Models

Definition 6.1. We say a σ structureM in SET[H] is κ-generated if for every

sort X ∈ Sσ, XM is a κ-generated object.

From now on H will be countably presented and all languages will be count-

able.

Lemma 6.2. There is a surjection fσ from the objects of ModL((σRel)Mor)(Th
σRel
Mor)

to Strσ(SET[H]).

Proof. We let fσ(M) = p(hσMor (U)|σRel).

Lemma 6.3. The equivalence relation “U0 ≡C[H] U1 if and only if fσ(U0) ∼=

fσ(U1)” is a PCω1
equivalence relation.

Proof. By Lemma 3.11 we know fσ(U0) ∼= fσ(U1) if and only if there is a σiso

structure I in SET[H] where I |= Thiso(σ), Iσ0
∼= fσ(U0) and Iσ1

∼= fσ(U1).

However such an I exists if and only if there is an interpretation of [·]I of

(σiso)Rel where [·]I |= T̂ hiso and [·]I |(σ0)Rel = hσMor (U0)|σRel and [·]I |(σ1)Rel =

hσMor (U1)|σRel (where this equality is after the obvious association of σi with

σ).

But this last statement holds if and only if there is some ((σiso)Rel)Mor

model ISET which satisfies Mor(σiso)Rel(T̂ hiso) and ISET|L((σ0)Rel)
∼= U0 and

ISET|L((σ1)Rel)
∼= U1. Hence ≡C[H] is PCω1 .

Proposition 6.4. For any T ⊆ Lω,ω(σ) and any U ∈ Mod(σRel)Mor the following

are equivalent:

(1) fσ(U) |= T .

(2) U |= ThσRelMor(T̂ )

Proof. By Corollary 4.24 (2) is equivalent to the statement that hσ(U) |=

MorσRel ∪ T̂ which is in turn equivalent to the statement that hσ(U)|σRel |= T̂

(as MorσRel is a conservative extension of the empty theory for interpreta-

tions). But we also know by Proposition 3.25 that hσ(U)|σRel |= T̂ if and only

if [fσ(U) =]p(hσ(U)|σRel) |= T .
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Lemma 6.5. For every model U ∈ ModL((σRel)Mor)(Th
σ
Mor), fσ is countably

generated if and only if U is countable.

Proof. This follows from the fact that the sorts of σ and (σRel)Mor are the same

and for every such sort X we have Xfσ(U) = (HUX ,∼) for some ∼.

This then gives us the following very important corollary.

Corollary 6.6. There is a bijection between isomorphism classes of countably

generated σ-structures in SET[H] that satisfy a theory T and ≡SET[H] equiva-

lence classes of countable models of (σRel)Mor which satisfy ThσRelMor(T̂ ) in SET.

Theorem 6.7. If (SET,H) is a countably presented simple definable hyperdoc-

trine then for any theory T ⊆ Lω,ω(σ) one of the following holds:

• There is are continuum many countably generated models of T in SET[H]

(up to isomorphism.)

• There are at most ℵ1 many countably generated models of T in SET[H]

(up to isomorphism).

Proof. We know that ≡SET[H] is a PCω1
equivalence relation and ThσRelMor(T̂ ) ∈

Lω1,ω(L((σRel)Mor)) so by Corollary 2.7 there is either a perfect set of ≡SET[H]

inequivalent models in SET satisfying ThσRelMor(T̂ ) or there are at most ℵ1 many

≡SET[H] inequivalent models in SET satisfying ThσRelMor(T̂ ).

But by Corollary 6.6 the number of isomorphism classes of countably gen-

erated models in SET[H] which satisfy T is the same as the number of ≡SET[H]

equivalence classes of models satisfying ThσRelMor(T
∗) in SET.

Corollary 6.8. If (A, ·) is a countable PCA then for any theory T ⊆ Lω,ω(σ)

one of the following holds:

• There is are continuum many countably generated models of T in RT(A).

• There are at most ℵ1 many countably generated models of T in RT(A).
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6.2. Bound Models

We will now show that Morley’s theorem holds for monic bound models as

well. In this section let (B,∼B) be a countably generated element of SET[H].

Our first step will be to characterize (B,∼B).

Proposition 6.9. The collection of U ∈ ModL(τ)(Th
σ
Mor) such that fσ(U) is

monic bound by (B,∼B) is a PCω1 class.

Proof. Let σm = σ ∪ {B} ∪ {fX : X → B for each sort X ∈ Sσ} where B is

a new sort. Let Boundm(σ) ⊆ Lω,ω(σm) be the theory which says “Every fX

is monic” (note that this can be expressed in Lω,ω(σm) by Lemma 3.5). The

following are then equivalent for any U ∈ ModL(τ)(Th
σ
Mor).

(1) fσ(U) is monic bound by (B,∼B).

(2) There is a σm structureM in SET[H] such thatM |= Boundm(σ), BM =

(B,∼b) and M|σ = fσ(U).

(3) There is a model U∗ |= Th
σmRel
Mor(

̂Boundm(σ)) where U∗|L((σRel)Mor) = U ,

HU
∗

B = B and [∼B ]U∗ =∼B (where h(σmbRel)Mor = [·]U∗).

Now consider the language τB = (σmRel)Mor ∪ {cb : b ∈ B} (where each cb is a

constant) and the sentence ϕB which says

(i) (∀x : B)
∨
b∈B(x = cb) and

∧
b0,b1∈B,b0 6=b1 cb0 6= cb1 .

(ii)
∧
{(∼B)A((cb0 , cb1), ca) : a ∈ AH, (b0, b1) ∈ B ×B and a ∈∼B (b0, b1)}.

(i) says we have a constant for each element of B and the sort B consists

of exactly those constants (no two of which are equal). (ii) then characterizes

the relation ∼B so that when B is interpreted as B then ∼B must be ∼B . In

particular this means that (3) above is equivalent to

(4) There is a model U∗ |= Th
σmRel
Mor(

̂Boundm(σ))∧ϕB where U∗|L((σRel)Mor) =

U .

But this then implies the collection {U : fσ(U) is monic bound by (B,∼B)} is

PCω1
.
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We then have the following immediate consequence:

Theorem 6.10. If (SET,H) is a countably presented simple definable hyper-

doctrine and B is a countably generated element of SET[H] then for any theory

T ⊆ Lω,ω(σ) one of the following holds:

• There is are continuum many models of T in SET[H] which are monic

bounded by B.

• There are at most ℵ1 many models of T in SET[H] which are monic

bounded by B.

Proof. This follows immediately from Lemma 2.8, Lemma 6.3 and Proposition

6.9.

Corollary 6.11. If (A, ·) is a countable PCA and RT(A) is the realizability

topos over (A, ·) then for any theory T ⊆ Lω,ω(σ) one of the following holds:

• There is are continuum many models of T in RT(A) which are monic

bounded by B.

• There are at most ℵ1 many models of T in RT(A) which are monic bounded

by B.

7. Miscellaneous

7.1. Absoluteness

In this section we observe that in Theorem 6.7 which of the two cases occurs

is independent of the model of set theory. Specifically we have:

Proposition 7.1. Suppose SET0,SET1 are standard20 models of ZFC and let

A,E, S,O, P ⊆ SET0 ∩ SET1 come from a psuedofunctor. Denote by H0 and

H1 the corresponding psuedofunctors in SET0 and SET1 respectively. Further

suppose (SET0,H0) is simple in SET0, (SET1,H1) is simple in SET1 and the

20By a standard model we mean a subclass X of SET where (X,∈) |= ZFC
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same formulas witness this in both models of set theory. Then the following are

equivalent.

• There is a perfect set of reals in SET0 each encoding a countably generated

model of T in SET0[H0].

• There is a perfect set of reals in SET1 each encoding a countably generated

model of T in SET1[H1].

Proof. Notice the same PCω1
formula defines ≡SET0[H0] and ≡SET1[H1] and

ThσRelMor(T̂ ) is the same formula in both of these contexts. Hence the result

follows from Corollary 2.7.

Corollary 7.2. If (A, ·) is a PCA and SET0,SET1 are standard models of ZFC

containing A then the following are equivalent for any theory T .

• There is a perfect set of reals each encoding a countably generated model

of T in RT(A)SET0 .

• There is a perfect set of reals each encoding a countably generated model

of T in RT(A)SET1 .

7.2. O(T )-Valued Sets

Up until now all of the hyperdoctrines we have considered have been moti-

vated by some form of realizability. In this section we will consider a different

type of hyperdoctrine, one that comes from the H-valued sets for a Heyting

algebra H. The category of H-valued sets, which is equivalent to the category

of sheaves on H, were originally introduced by Higg and were studied in [2]

by Fourman and Scott. Further one of the original motivations for the PER

construction was to find a common generalization of the category of H-valued

sets and the effective topos (see [10]).

In this section we show that for any topological space T , the hyperdoctrine

from which we obtain O(T )-valued sets (where O(T ) is the collection of open

sets of T ) is both simple and definable. This will then allow us to deduce Mor-

ley’s theorem for O(T )-valued sets (for certain T ).
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We now consider the hyperdoctrines, HS(O(T )), associated with O(T )-

valued sets. For a more thorough treatment see [10].

Example 7.3 (O(T )-Valued Sets). Suppose T is a topological space with open

sets O(T ) and a basis B(T ). Let HS(T ) be the hyperdoctrine on SET given by

• HS(T )(X) = (SET[X,O(T )],≤X) and α ≤X β ⇔ (∀x ∈ X)α(x) ⊆ β(x).

• For a map f ∈ SET[X,Y ], HS(T )(f)(x) = x ◦ f .

Then HS(T ) is the definable with:

• AHS(T ) = T and EHS(T ) = {id} (so OHS(T ) is trivial).

• SHS(T ) = {s : s ∈ B(T )} and PHS(T ) = ∅.

The only non-trivial part to check of the above definition is that α ≤X β if

and only if (∀x : X)α(x) ⊆ β(x). But this is because the only element of EHS(T )

is the identity map.

In particular if T is countable and second countable then HS(T ) is countably

presentable.

Lemma 7.4. HS(T ) is simple.

Proof. For R0, R1 ∈ Rσ of type X we define the following formulas of type

〈HX ,DS〉:

• D∧(R0, R1)(x, a)⇔ R0
A(x, a) ∧R1

A(x, a).

• D∨(R0, R1)(x, a)⇔ R0
A(x, a) ∨R1

A(x, a).

• D→(R0, R1)(x, ca)⇔
∨
a∈s∈SHS(T )

∧
b∈s ¬R0

A(x, cb) ∧R1
A(x, cb).

and forR ∈ Rσ of type 〈X,Y 〉 we define the following formulas of type 〈H〈X,Y 〉,DS〉:

• D(∃Y )(R)(x, a)⇔ (∃y : Y )AR(x, y, a).

• D(∀Y )(R)(x, ca)⇔
∨
s:a∈s∈SHS(T )

∧
b∈s(∀y : Y ) ∈ AR(x, y, cb).
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The following claim then follows as the Heyting algebra structure on HS(T )(X)

is calculated pointwise21 and for Φ ∈ H(X × Y )

• (∃Y )XΦ ∼=st λx ∈ X.
∨
y∈Y Φ(x, y).

• (∀Y )XΦ ∼=st λx ∈ X.
∧
y∈Y Φ(x, y).

Claim 7.5. We have

• V (σ,D∧(R0, R1), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x) ∧R1(x)]}

• V (σ,D∨(R0, R1), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x) ∨R1(x)]}

• V (σ,D→(R0, R1), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ [R0(x)→ R1(x)]}

• V (σ,D(∃Y )(R)(x, a), R∗) = {[·] : [·] |= (∀x : X)R∗(x)↔ (∃y : Y )R(x, y)}

• V (σ,D(∀Y )(R)(x, a), R∗) = {[·] : [·] |= (∀x : x)R∗(x)↔ (∀y : Y )R(x, y)}

As a result HS(T ) is a simple hyperdoctrine (because by Lemma 4.17 each of

the above collections is definable).

Before we state the main result of this section we will make a couple of

observations. First the following follows immediately from [2].

Lemma 7.6. Let i be the equivalence of categories mentioned in [2] between

O(T )-valued sets and sheaves on B(T ). Then following are equivalent for any

O(T )-valued set (A,∼A).

• (A,∼A) is countably generated.

• i(A,∼A) has a countable subseparated presheaf. I.e. there is a subseparated

presheaf which, when considered as a functor F : B(T )op → SET has

|
⋃
s∈B(T ) F (S)| countable.

21In particular the only non-trivial connective on sets to consider is A → B which is the

interior of (T −A) ∪B.
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In [1] we called a sheaf which satisfied the above a “countably generated”

sheaf and we called a sheaf which was monic bound by the natural numbers

object monic countable.

Corollary 7.7. If T is a countable topological space with a countable basis

B(T ). Then the natural number object NT is countably generated.

Proof. This is because in the category of sheaves on T (and hence also in the

category of O(T )-valued sets) the natural number object is the colimit of ω

many copies of the terminal object.

The following is then immediate from Theorem 6.7, Theorem 6.10,

Corollary 7.7 and Lemma 7.6.

Proposition 7.8. If T is a countably topological space with a countable basis

B(T ) then for any theory Th in a countable language we either have:

• There is are continuum many countably generated models of Th in the

category of sheaves on B(T ).

• There are at most ℵ1 many countably generated models of Th in the cat-

egory of sheaves on B(T ).

and we also either have

• There is are continuum many monic countable models of Th in the cate-

gory of sheaves on B(T ).

• There are at most ℵ1 many monic countable models of Th in the category

of sheaves on B(T ).

This is an improvement on the main result of [1], in that it allows us to

remove the determinacy requirement from the statement of the theorem (at

least for topological spaces of the above form).
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