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Abstract. The goal of this paper is to extend Morley’s results in [10] to

categories of sheaves. We show that in this context there are four natural

notions of “a countable model”. We then show ΠΠΠ1
3 determinacy implies that

for any of these four notions and for any sentence T ∈ Lω1,ω(L) either there

is a perfect set of non-isomorphic models of T in our category of sheaves or

else there are at most ℵ1 many non-isomorphic models of T in our category
of sheaves. We also show that for one of the four notions of countable we can

remove the determinacy assumption.

1. Introduction

1.1. Summary. At the end of his seminal paper [12], Vaught asked the ques-
tion “Can it be proved, without the use of the continuum hypothesis, that there
exists a complete theory having exactly ℵ1 non-isomorphic denumerable models?”.
This question has stood to this day as one of the oldest open problems in model
theory. The statement that it has a negative answer, i.e. that no countable first
order theory has exactly ℵ1 many countable models (assuming ¬CH), has become
known as “Vaught’s Conjecture”.

Over the years much work has been done on Vaught’s conjecture and there
have been several special situations where it has been shown to hold (such as for
ω-stable theories in [11] by Shelah, Harrington and Makkai). However the general
case remains elusive. In his paper [10], Morley took one of the most significant steps
towards resolving Vaught’s conjecture. He proved that any sentence of Lω1,ω(L)
which does not have a perfect set of countable models must have either countably
many or ℵ1 many countable models.

Among the many reasons why Morley’s paper represented significant progress
towards a resolution of Vaught’s conjecture was that it extended the scope of the
conjecture from first order theories to sentences of Lω1,ω(L). By extending the
scope of Vaught’s conjecture, Morley brought the conjecture into the realm of in-
finitary logic as well as descriptive set theory and thereby opened up the use of
techniques from these areas to its study. This has led to such important discoveries
as the existence of a minimal counterexample to Vaught’s conjecture by Harnik and
Makkai (in [3]) as well as several other results about the nature of counterexamples.
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One of the most significant discoveries of categorical logic is that the operations
of Lω1,ω(L) can be described categorically. This allows us, as is done by Makkai
and Reyes in [9], to consider models of sentences of Lω1,ω(L) in categories other
than the category of sets and functions.

The goal of this paper is to extend Morley’s result to the context where the
underlying category is a category of sheaves on a weak site. In the course of this
paper we will see that there are four reasonable notions of “a countable model”.
We call these notions being purely countable, countably generated, monic countable
and epi countable.

The main results of this paper show that for any of our four notions of a
countable mode, any countable language L, any sentence T ∈ Lω1,ω(L) and any
countable weak site (C, JC), if there isn’t a perfect set of countable models of T in
Sh(C, JC)1 then, under ΠΠΠ1

3 determinacy, there are no more than ω1 many countable
models of T in Sh(C, JC). Further, in the case of purely countable models, we can
remove the determinacy assumption.

1.2. Outline. We prove the main results of this paper by showing there is an
equivalence (of the appropriate type) between the collections of countable models
we care about in our category of sheaves and specific ΣΣΣ1

2 subsets of the reals. This
reduces the question of counting the number of countable models in a category
of sheaves to counting the number of isomorphism classes under an appropriate
isomorphism relation on our ΣΣΣ1

2 set. These isomorphism relations turn out to be
either ΣΣΣ1

1 or ΣΣΣ1
2 depending on the notion of countability.

We start this paper in Section 2 by reviewing some set theory and category
theory which we will need in order to count the number of these isomorpihsm classes
of models.

Next, in Section 3, we move onto a discussion of models in a category of sheaves.
One of the most important ideas in this section is that when counting the number
of models in a category of sheaves, it suffices to restrict ourselves to a particular
collection of models in the category of separated presheaves. We further show that
these separated presheaf models can be thought of as ordinary set models of a sen-
tence of L∞,ω(L′) (for some specific language L′).

In Section 4 we introduce the concept of Σ1-definable and ∆1-definable classes
of models. Σ1-definable classes of models are particularly well-behaved and most
collections of models we consider will be Σ1-definable classes. Specifically, in Section
4.2, we show that the collection of models of a sentence of L∞,ω(L) in a category
of sheaves forms a ∆1-definable class of models.

Finally, in Section 5, we introduce our four notions of countability and show
that the models of each notion form a Σ1-definable class of models. We then prove,
in Section 6, our various results concerning the number of countable models in any
Σ1-definable class (and in particular the number of countable models which satisfy
a sentence of Lω1,ω(L)).

We end in Section 7 with some conjectures, including a generalization of
Vaught’s conjecture and a simple example of a category of sheaves in which Vaught’s
conjecture holds.

1.3. Acknowledgement. The author would like to thank Gerald Sacks for
introducing him to Vaught’s conjecture and Morley’s paper [10] as well as for many

1Sh(C, JC) is defined in Section 2.2. It is equivalent to the category of sheaves on (C, JC).
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interesting conversations. The author would also like to thank Leo Harrington, Jan
Reimann and Dana Scott for useful conversations during the development of this
paper.

2. Background

2.1. Set Theory. We begin this section with a brief discussion of the set
theoretic notations and concepts used in this paper. We refer the reader to such
standard texts as [6] for any set theoretic results or definitions not explicitly dis-
cussed.

In this paper we will assume Zermelo-Fraenkel Set Theory (ZF ) as our am-
bient theory and we will assume all results take place in a fixed model of ZF
which we refer to as SET. By a “standard model” we mean a pair (M,E) where
M is a transitive (not necessarily proper) class and E is a well-founded relation.
Unless otherwise stated all standard models will satisfy ZF . While we will not
necessarily assume this of all standard models of set theory, we will assume that
SET |= [

∧
α<ω1

|Xα| ≤ ω1]→ |
⋃
α<ω1

Xα| ≤ ω1.2

There is one important situation when we will be interested in standard models
which may not satisfy ZF . There are times when we will need to prove the exis-
tence of certain standard (countable) models of set theory. However, as ZF doesn’t
prove such models exist, we will instead use models of a finite fragment which we
call ZF ∗. We want to think of ZF ∗ as a fragment of ZF “large enough to prove
every result which came before it in this paper”. In particular this means that
while in each result ZF ∗ is a fixed finite fragment of ZF , ZF ∗ is not necessarily
fixed between results.

Many of our results depend on results from descriptive set theory which we
collect here. As the reader considers these results, it is worth keeping in mind how
they will be used. We will show that for our purposes it suffices to consider collec-
tions of models where the collection is encoded by a ΣΣΣ1

2 set of reals. The question
of counting the number of models then becomes a question of counting the number
of equivalence classes under model isomorphism (in the appropriate category). The
notion of model isomorphism will in general be a ΣΣΣ1

2 relation, except in special
situations when we can reduce it to a ΣΣΣ1

1 relation.
If the reader wishes to take the descriptive set theory results on faith, he can

browse Proposition 2.3, Proposition 2.8, Proposition 2.9 and Proposition 2.12 which
are the fundamental results in this section and move on to Section 2.2.

We now give an important connection between ΣΣΣ1
2 sets of reals and Σ1 classes.

Definition 2.1. Suppose L is a first order language. We say a formula ϕ(x)
of set theory (possibly with parameters) is an L-formula if

• ϕ is only satisfied by models of L in SET.
• ϕ is closed under isomorphism (i.e. if ϕ(x) holds and x is isomorphic to y

(as models in SET) then ϕ(y) holds).

2This follows from the axiom of choice, but it is consistent with ZF that it does not
hold.
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Definition 2.2. Suppose L is a countable language and let ModL(ω) ⊆ 2ω

be the collection of reals which encode (via fixed encoding3) models of L. We give
ModL(ω) the standard topology (see [2]). For each element x ∈ ModL(ω) let xM
be the model of L on ω which x encodes.

Proposition 2.3. Suppose L is a countable language and ϕ is an L formula
which is Σ1 and has only a hereditarily countable parameter P . Also suppose P ∗ is
a real encoding the graph4 of P . Then there is a Σ1

2(P ∗) formula, ϕ∗(x), such that
ϕ∗(x) holds if and only if ϕ(xM ) holds. Further the choice of ϕ∗ is independent of
the standard model of set theory we are working in.

Proof. Let ϕ(X) = (∃y)ψ(X, y, P ) where ψ is a ∆1 formula. We define ϕ∗(x)
to be the formula satisfying:

• x ∈ModL(ω).
• There exists E ⊆ ω × ω such that

– E is well-founded.
– {x, P} ⊆ tc(ω,E)
– tc(ω,E) |= ZF ∗ ∧ (∃y)ψ(x, y, P ).

It is clear that ϕ∗ is Σ1
2(P ∗). Further ϕ∗(x) holds if and only if there is a countable

standard model of ZF ∗ containing x where ϕ(xM ) holds. So by the absoluteness of
∆1 formulas, if ϕ∗(x) holds then so does ϕ(xM ). Now suppose SET |= ψ(xM , y, P )
for some set y. Let (K,∈) be a transitive model of ZF ∗ which contains {x, y, P} and
satisfies ψ(x, y, P ). Let (H,∈) be a countable, transitive, elementary substructure of
(K,∈) containing {x, P} (one exists as the transitive closure of {x, P} is countable).
So H |= (∃y)ψ(x, y, P ) and satisfies ZF ∗. But, as H is countable there is a bijection
f : ω → H. So if xEy ↔ f(x) ∈ f(y) then E witnesses that ϕ∗(x) holds. �

We will need the following Theorem due to Harrington and Shelah ([5]).

Definition 2.4. A set X ⊆ ωω is κ-Suslin if there is a tree T ⊆ (ω × κ)<ω

such that x ∈ X ↔ (∃y ∈ κω)(x, y) ∈ [T ]5. We say X = p[T ]. We say X is
co-κ-Suslin if (ωω −X) is κ-Suslin.

Definition 2.5. Suppose E is a co-κ-Suslin equivalence relation on ωω with
ωω − E = p[T ] where T ⊆ (ω × κ)<ω. E is stongly thick if

(∗t) There is a perfect set P and t ⊆ T with |t| = ω such that P × P ⊆ p[T ].

Notice that if an equivalence relation is strongly thick then it contains a perfect
set of inequivalent reals.

Proposition 2.6 ([5]). Suppose
• E is a co-κ-Suslin equivalence relation on ωω with ωω − E = p[T ] where
T ⊆ (ω × κ)<ω.

3By a “fixed encoding” we mean any ∆1 formula d (without parameters) such that for

any standard models V of ZF ∗ and any model M of the language L in V , V |= |M | = ω → [(∃x ∈
ModL(ω))(∀N ∈ V )d(x,N)↔ N = M ] and V |= (∀x ∈ModL(ω))(∃y)d(x, y).

4A set P is hereditarily countable if its transitive closure, tc(P ), is countable. For each
transitive set T , (T,∈) is a tree. The graph of a set P is the pair ((tc(P ),∈), P ) treated as a
model of the language of graphs with a distinguished predicate.

5For a tree T on (ω×κ)<ω , [T ] is the collection (x, y) ∈ (ω×κ)ω such that (x|n, y|n) ∈ T
for all n ∈ ω.
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• In some Cohen forcing extension of L[T ], ωω − p[T ] is an equivalence
relation.

• E is not strongly thick.
Then there are at most κ many E-inequivalent reals.

There are two conditions on our ambient set theoretic universe which we would
like to consider.

Definition 2.7. We define the following statements:
(∗#) Let (∗#) be the statement:

– (∀a ∈ ωω) a# exists.
– There is a real which is Cohen generic over L(H(ω3))6.

(∗B) Let B be the closure of the ΣΣΣ1
2 sets under finite boolean combinations and

continuous preimage. Let (∗B) be the statement
– All sets in B are determined.
– Dependent Choice holds.

Proposition 2.8. Suppose X is a ΣΣΣ1
2 set of reals and E is a ΣΣΣ1

2-equivalence
relation on ωω which does not contain a perfect set of E-inequivalent reals in X.
Further suppose (∗#) holds. Then there are at most ℵ2 many E-inequivalent reals
in X.

Proof. Let E′(x, y) := E(x, y) ∨ (¬X(x) ∧ ¬X(y)). E′ is then ΠΠΠ1
3 and so E′

is co-ω2-Suslin by a theorem of Martin (see [6] Theorem 32.15). If there does not
exists a perfect set of E′-inequivalent reals, then E′ is not strongly thick. Hence,
by Proposition 2.6, there are at most ℵ2 many E′-inequivalent reals and so at most
ℵ2 many E-inequivalent reals in X. �

The following uses, in a fundamental way, a theorem of Harrington and Sami
(from [4]).

Proposition 2.9. Suppose X is a ΣΣΣ1
2 set of reals and E is a ΣΣΣ1

2-equivalence
relation on ωω. If (∗B) holds and there is not a perfect set of E-inequivalent reals
in X then there are at most ℵ1 many E-inequivalent reals in X.

Proof. Lets assume there is not a perfect set of E-inequivalent reals in X.
We know by a result of Sierpinski (see [6] Theorem 25.19) that X =

⋃
α<ω1

Xα

where each Xα is Borel and disjoint. Define xEαy ⇔ xEy ∨ [¬Xα(x) ∧ ¬Xα(y)].

Claim 2.10. For each α ∈ ω1, Eα is a ∆∆∆1
2 equivalence relation such that there

does not exists a perfect set of Eα-inequivalent reals.

Proof. For each α ∈ ω1 it is immediate that Eα is a ΣΣΣ1
2 equivalence relation.

If there existed a perfect set of Eα-inequivalent reals, then there would be a perfect
set of E-inequivalent reals in X (and we have assumed there isn’t). So there must
not be a perfect set of Eα-inequivalent reals. Further, by Corollary 3 in [4], Eα is
a ∆∆∆1

2 set. �

Claim 2.11. For each α < ω1, there are at most ω1 many Eα-inequivalent
reals.

6H(κ) consist of all sets whose transitive closure has size less than κ.
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Proof. First note Eα is a ∆1
2(eα) equivalence relation for some eα ∈ ωω.

Because (∗B) holds all Σ1
1(eα) sets are determined and so, by Theorem 33.19 in [6],

e#α exists. In particular this means that |(ℵ1)L[eα]| = ω and so, by a (relativized)
Corollary 3 of [5] there are at most ℵ1 many Eα-inequivalent reals. �

For each α, E and Eα agree on Xα. So in each Xα there are at most ℵ1

many E-inequivalent reals. Hence in X =
⋃
α<ω1

Xα there are at most ℵ1 many
E-inequivalent reals. �

The results above concerning ΣΣΣ1
2 equvialence relations use large cardinal and

determinacy assumptions in a fundamental way. However, if we restrict ourselves
to ΣΣΣ1

1 relations instead of ΣΣΣ1
2 relations, then we are able to remove the large cardinal

assumptions.

Proposition 2.12. Suppose X is a ΣΣΣ1
2 set of reals and E is a ΣΣΣ1

1-equivalence
relation ωω. If there is not a perfect set of E-inequivalent reals in X, then there
are at most ℵ1 many E-inequivalent reals in X.

Proof. Lets assume there is not a perfect set of E-inequivalent reals in X.
We know, by Theorem 25.19 of [6], that X =

⋃
α<ω1

Xα where each Xα is Borel
and the Xα are disjoint. Define xEαy ⇔ xEy ∨ [¬Xα(x) ∧ ¬Xα(y)].

Each Eα is then a ΣΣΣ1
1 equivalence relation on ωω such that there is not a perfect

set of Eα-inequivalet reals (because if there were then there would be a perfect set
of E-inequivalent reals on X). Hence for each α < ω1 there are at most ℵ1 many
Eα-inequivalent reals. But for each α, E and Eα agree on Xα. So in each Xα there
are at most ℵ1 many E-inequivalent reals. Hence in X =

⋃
α<ω1

Xα there are at
most ℵ1 many E-inequivalent reals. �

2.2. Category Theory. In this section we review some of the categorical
notions which we will need. For more information on the category theory in this
paper the reader is referred to such standard texts as [7]. For more information on
the sheaf theoretic ideas used in this paper the reader is referred to such standard
texts as [8]. In this section we also mention several results concerning the category
Sh(C, JC) and the notion of a weak site. The proofs of these results we leave to the
reader (as they are not difficult). However, for a precise treatment of these results
we refer the reader to [1].

All categories in this paper will be locally small and we will use the convention
that if C is a category with objects A and B, C[A,B] is the set of morphisms whose
domain is A and whose codomain is B. If C is a small category we also use C[−, B]
for the set of all morphisms whose codomain is B. We will abuse notion (when
no confusion can arise) and let SET be the category of sets and functions in our
ambient model of ZF .

Definition 2.13. A weak site is a pair (C, JC) where C is a small category
and JC a function from the objects of C to collections of sieves such that for any
A ∈ obj(C):

• (Identity) C[−, A] ∈ JC(A)
• (Base Change) If S ∈ JC(A) and f ∈ C[B,A] then f∗S = {g ∈ C[−, B] :
f ◦ g ∈ S} ∈ JC(B)

If in addition (C, JC) satisfies:
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• (Local Character) For all sieves T on A, if S ∈ JC(A) and (∀f ∈ S)f∗T ∈
JC(dom(f)) then T ∈ JC(A).

then we say (C, JC) is a site.

The notion of a weak site is the absolute analog of a site and for every weak
site there is a minimal site containing it.

Definition 2.14. Let (C, JC) be a weak site. Define JαC(A) on A ∈ obj(C)
as follows

• J0
C(A) = JC(A).

• Jα+1
C (A) = {T a sieve on A : (∃S ∈ JC(A))(∀f ∈ S(B))f∗T ∈ JαC(B)}.

• Jω·γC (A) =
⋃
β<ω·γ J

β
C(A).

Define JORD
C =

⋃
α∈ORD J

α
C .

We can think of the structure (C, JORD
C ) as the site obtained by closing the

weak site (C, JC) under local character.

Lemma 2.15. For any weak site (C, JC), (C, JORD
C ) is a site.

Lemma 2.16. For any weak site (C, JC), the set {(S,A) : S ∈ JORD
C (A)} is

Σ1 definable with parameter (C, JC).

Definition 2.17. Suppose (C, JC) is a weak site and F : Cop → SET is a
presheaf.

• We say F is separated for (C, JC) if for every compatible collection of
elements 〈(ai, i) : i ∈ S〉 on A there is a most one a ∈ F (A) covered by
〈(ai, i) : i ∈ S〉.

• We say F is a sheaf for (C, JC) if for every compatible collection of el-
ements 〈(ai, i) : i ∈ S〉 on A there is exactly one a ∈ F (A) covered by
〈(ai, i) : i ∈ S〉.

We denote by Sep(C, JC) and Sheaf(C, JC) the full subcategories of presheaves on
C consisting of the separated presheaves and the sheaves for (C, JC) respectively.

Lemma 2.18. We have the following equalities:
• Sheaf(C, JC) = Sheaf(C, JORD

C ).
• Sep(C, JC) = Sep(C, JORD

C ).

This theorem says, for the purpose of considering sheaves and separated presheaves
we can restrict our attention to weak sites. This is important for two reasons. First,
being a site is not an absolute property. However Lemma 2.18 shows that it suffices
to restrict our attention to weak sites which are absolute. Second, as the proof of
our main result will rely on facts about definable subsets of reals, it is important
that all parameters under consideration be countable. However, there are countable
weak sites (C, JC) such that in any standard model of set theory any site containing
(C, JC) is uncountable (and in fact has size of the continuum).

The following abuse of notation will be useful.

Definition 2.19. If F : Cop → SET is a functor we say b is an element of F
(b ∈ F ), if (∃U ∈ obj(C))b ∈ F (U). We define the size of F (|F |) to be the size
of the collection of elements, i.e. |{b : b ∈ F}|. If F,G : Cop → SET then we say
F ⊆ G if (∀U ∈ obj(C))F (U) ⊆ G(U).
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Lemma 2.20. Suppose V0 ⊆ V1 are standard models of set theory, A and B
are separated presheaves (in V0) for a weak site (C, JC) and V0 |= A ⊆ B. For
b ∈ B(U) let CovA(b) ⇔ {f ∈ C[−, U ] : B(f)(b) ∈ A} ∈ JORD

C (U). Then for any
b ∈ B

V0 |= CovA(b)⇔ V1 |= CovA(b).

Proof. This is by induction on the least α such that {f ∈ C[−, U ] : B(f)(b) ∈
A} ∈ JαC . �

If we are given a separated presheaf B, a subpresheaf A, and an element b of B
then whether b is covered by elements of A is independent of the standard model
of set theory we are in. This will be important later on.

Definition 2.21. Suppose (C, JC) is a weak site. Let Sh∗(C, JC) be the
category such that:

(a) The objects of Sh∗(C, JC) are the separated preheaves for (C, JC).
(b) The morphisms of Sh∗(C, JC)[D,R] are the tuples 〈d, r, f〉 where

– d, r are separated presheaves for (C, JC).
– f : d⇒ r is a f is a natural transformation.
– d ⊆ D, r ⊆ R and d, r cover D,R respectively in (C, JORD

C )7.
(c) 〈d, r, f〉 ◦ 〈d′, r′, g〉 = 〈g−1[r′ ∩ d], r, f ◦ g〉.
(d) If X ∈ Obj then Id(X) = 〈X,X, idX〉.
Definition 2.22. For all 〈df , rf , f〉, 〈dg, rg, g〉 ∈ Sh∗(C, JC)[D,R] we define

〈df , rf , f〉 ≡ 〈dg, rg, g〉 if and only if (∀x ∈ df ∩ dg)f(x) = g(x). We then define
Sh(C, JC) = Sh∗(C, JC)/≡.

Lemma 2.23. If V0 ⊆ V1 are standard models then Sh∗(C, JC)V0 ⊆ Sh∗(C, JC)V1

and for all f, g ∈ Sh∗(C, JC)V0 [A,B], V0 |= f ≡ g if and only if V1 |= f ≡ g.

Lemma 2.24. Sh(C, JC) is definable by a Σ1 formula whose only parameter is
(C, JC).

Proof. First notice that ≡ and the property of being a separated presheaf for
(C, JC) are ∆1 with parameter (C, JC). So it suffices to show that there is a Σ1

formulas S(F, x, y, C, JC) such that if x and y are separated presheaves for (C, JC)
then S(F, x, y, C, JC) holds if and only if F = 〈d, r, f〉 ∈ Sh∗(C, JC)[x, y] (i.e F is
a map from x to y in Sh∗(C, JC)). However, to show that S is Σ1 it suffices to
show that the statement “d is a cover of D”, i.e. (∀a ∈ D)Covd(a), is Σ1. But this
follows from Lemma 2.16. �

Notice that Sh(C, JC) is a category and

Lemma 2.25. There is an equivalence of categories j : Sh(C, JC)/≡→ Sheaf(C, JC).

Theorem 2.26. Let b : Sep(C, JC) ⊆ Sh(C, JC) be the inclusion map on
objects where b(f) = 〈A,B, f〉 if f : Sep(C, JC)[A,B]. Then j ◦b is right adjoint to
the inclusion map i : Sep(C, JC) → Sheaf(C, JC). In particular j ◦ b is isomorphic
to the sheafification functor a : Sep(C, JC)→ Sheaf(C, JC).

These results tell us that Sh(C, JC) is a version of the category of sheaves which
is, in some sense, absolute.8

7We say d covers D if for every a ∈ D, Covd(a) holds.
8Notice that the category of sheaves is not absolute as the property of a functor being a

sheaf is not absolute.
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Lemma 2.27. Suppose A ∈ obj(Sh(C, JC)) and S ∈ SubSh(C,JC)(A) is a sub-
object of A in Sh(C, JC)9. Then there is a (unique) subpresheaf bSc ⊆ A such
that 〈bSc, A, id〉 ∈ S and whenever 〈d, r, f〉 ∈ S then f [d]10 ⊆ bSc as separated
presheaves. Further bSc is independent of the standard model of set theory we are
working in.

Proof. Suppose 〈d, r, f〉 ∈ S. Let bScf (U) = {a ∈ A : Covf [d](a)} =
a(f [d]) ∩ A. It is immediate that bScf ⊆ A and hence 〈bScf , A, id〉 is a subob-
ject of A. Further, 〈bScf , A, id〉 ◦ 〈d, r∩bScf , f〉 ≡ 〈d, r, f〉 and so 〈bScf , A, id〉 ∈ S
(as 〈d, r ∩ bScf , f〉 is an isomorphism).

Finally as f [d] ⊆ bScf it suffices to show that if 〈d, r, f〉, 〈d′, r′, f ′〉 ∈ S then
bScf = bScf ′ . Now j(〈d, r, f〉) and j(〈d′, r′, f ′〉) are elements of the same sub-
object of j(A) so image(a(〈d′, r′, f ′〉)) = image(a(〈d, r, f〉)) and hence bScf ′ =
image(a(〈d′, r′, f ′〉)) ∩A = image(a(〈d, r, f〉)) ∩A = bScf .

It is also immediate from Lemma 2.20 that bSc is absolute between standard
models of set theory. �

We know that in the category of separated presheaves or in the category of
sheaves a subobject is determined by the image of one of its elements. Lemma 2.27
tells us is that the same holds for Sh(C, JC). I.e. that a subobject is determined
by a maximal subseparated presheaf covered by the range of one of its elements.

3. Model Theory in a Category of Sheaves

In this section we begin our discussion of the models in a category of sheaves.
For more on the basics of categorical model theory in categories of sheaves we refer
the reader to [8] and [9].

For simplicity of notation we will fix a first order language L = 〈SL,RL,FL〉
with sorts SL, relations RL and functions FL. We will also fix a weak site (C, JC).

3.1. Models and Languages. In this section we discuss the relationships
between models in Sep(C, JC) and Sh(C, JC).

Definition 3.1. Suppose D is a category which is has finite products. A
model M of L in D consist of:

• For every sort S ∈ SL an object SM of D.
• For every function f ∈ FL of sort ((S1, . . . , Sn), S) a map in D

fM : SM1 × · · · × SMn → SM .

• For every relation R ∈ RL of sort (S1, . . . , Sn) an object RM∗ and a monic
in D

RM : RM∗ → SM1 × · · · × SMn .
We let ModL(D) be the collection of all models of the language L in the category
D.

An important observation is that for any language L we can find an expansion
L′ and a first order theory T ′ in L′ such that:

9Recall that a subobject S of an object A is a collection of monomorphisms whose

codomain is A such that if s, s′ ∈ S then there is an isomorphism α : dom(s) → dom(s′) with

s′ ◦ α = s.
10f [d] is the image of d under f .



10 NATHANAEL LEEDOM ACKERMAN

• Every finite product of sorts in L′ is isomorphic to an actual sort.11

• Every model of L in any category with finite products has a unique ex-
pansion to L′ making it a model of T ′.

This observation allows us to assume, without loss of generality, that our models
are such that each finite product of sorts is isomorphic to an actual sort. While
this will not add anything substantively it will make the presentation simpler.

Definition 3.2. Suppose that M,N ∈ModL(D). A map of models f : M →
N is a set of maps 〈αS : S ∈ SL ∪RL〉 such that:

• αS ∈ D[SM , SN ] if S ∈ SL and αR ∈ D[RM∗ , R
N
∗ ] if R ∈ RL.

• For any function f ∈ FL with f : A→ B, αB ◦ fM = fN ◦ αA.
• For any relation R ∈ RL of sort S, αS ◦RM = RN ◦ αR.

This makes ModL(D) into a category.

Lemma 3.3. If D is Σ1-definable then ModL(D) is Σ1-definable.

Lemma 3.4. If f : D → E is a functor which preserves monomorphisms, then
f induces a functor from ModL(D) to ModL(E) obtained by applying f to every
sort, function and relation.

When no confusion can arise we will use the same symbol for a functor between
categories and for the functor between categories of models that it induces.

Corollary 3.5. b : Sep(C, JC)→ Sh(C, JC) extends to a functor
b : ModL(Sep(C, JC))→ModL(Sh(C, JC)).

Proof. Immediate. �

Corollary 3.5 is important because models in Sep(C, JC) are much easier to
handle from a set theoretic point of view than models in Sh(C, JC). Further, as we
will see, every model in Sh(C, JC) is isomorphic (in Sh(C, JC)) to a model which is
in the image of b. So, when counting the number of isomorphism classes of models,
it will suffice to restrict our attention to models in Sh(C, JC) which are in the image
of b.

There is a special class of separated presheaf models which are of particular
interest.

Definition 3.6. A model M in ModL(Sep(C, JC)) is sheaf like if for every
relation R in RL, RM∗ = bRMc and RM is the identity.

Lemma 3.7. The collection of sheaf like models of a language L in Sep(C, JC)
is a ∆1 class (with parameters are (C, JC) and L).

Proof. Immediate. �

Lemma 3.8. For every model M in ModL(Sh(C, JC)) there is a sheaf like
model M ′ in ModL(Sep(C, JC)) such that M ∼= b(M ′) in ModL(Sh(C, JC)) and

|ω × L×
∐
S∈SL

|SM || = |ω × L×
∐
S∈SL

|SM
′
||.

Proof. By Lemma 2.25 every map g ∈ Sh(C, JC)[A,B] is taken via j to a map
j(g) ∈ Sheaf[a(A),a(B)]. For each sort S and n ≤ ω we define Sn as follows:

11This includes the empty sort. In particular we have not mentioned constants because
they can be thought of as functions whose domain is the empty sort.
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• S0 = SM .
• Sn+1 = Sn ∪

⋃
g:P→S∈FL j(gM )[Pn].

• Sω =
⋃
n∈ω Sn.

Notice that |ω × L×
∐
S∈SL |S

M || = |ω × L×
∐
S∈SL |Sω||.

So it suffices to create the desired model with sorts Sω. In order to do this
we first observe that for each sort S, SM ⊆ Sω ⊆ a(SM ). For each sort S let
SM

′
= Sω and for each function f : S → P let fM

′
= j(fM )|SM′ . Note that

by construction fM
′
[SM

′
] ⊆ PM

′
. Let iSM,M ′ : SM → SM

′
be the inclusion map

from SM into Sω. For each relation R ⊆ S suppose RM = 〈aM , bM , rM 〉 and let
r∗ = r[aM ]. Then let RM

′

∗ = biSM,M ′ [r
∗]c and RM

′
be the identity. It is then

immediate from the definition that M ′ ∈ ModL(Sep(C, JC)) and is sheaf like.
Further the map of models {〈SM , SM ′ , iSM,M ′〉 : S ∈ SL} ∪ {〈aM , RM

′

∗ , rM 〉 : R ∈
RL} is an isomorphism between M and b(M ′) in ModL(Sh(C, JC)) with inverse
{〈SM , SM , id〉 : S ∈ SL} ∪ {〈rM [aM ], aM , (rM )−1〉 : R ∈ RL}. �

Lemma 3.8 shows that, for the purposes of counting isomorphism classes of
models in ModL(Sh(C, JC)), it suffices to restrict our attention to models of the
form b(M) where M is sheaf like.

Lemma 3.9. There is a Σ1 formula Iso(C,JC),L(x, y) (with parameters (C, JC)
and L) which holds if and only if

• x, y ∈ModL(Sep(C, JC)) are sheaf like.
• b(x) is isomorphic to b(y) in ModL(Sh(C, JC)).

Proof. The formula ϕ(f, g, x, y) which says
• x, y ∈ModL(Sep(C, JC)) and are sheaf like.
• f is a map from x to y in ModL(Sh(C, JC)).
• g is a map from y to x in ModL(Sh(C, JC)).

is Σ1 by Lemma 2.24. So Iso(C,JC),L(x, y) := [(∃f, g)ϕ(f, g, x, y)∧f◦g ≡ idy∧g◦f ≡
idx] is Σ1. �

3.2. Separated Presheaves as Models. In this section we show the col-
lection of models in Sep(C, JC) which are sheaf like is easily described from a
descriptive set theory point of view.

Proposition 3.10. For any language L there is a language LSL and a sentence
TSL of L∞,ω(LSL) such that:

(1) |LSL| = |L|
(2) ModLSL(TSL ,SET) is equivalent to the category of sheaf like models in

ModL(Sep(C, JC)).
(3) If k0 : ModLSL(TSL ,SET)→ ModL(Sep(C, JC)) is the equivalence of cate-

gories from (2) then k0 is ∆1 with parameters (C, JC) and L.
(4) For every model M of TSL in SET, |ω×

∐
S∈S

LS
L

SM | = |ω×
∐
S∈SL |S

k0(M)||

(i.e. a model of TSL in SET is the same size as the corresponding model
in Sep(C, JC))

Proof. Let LSL be the language consisting of the following:
• A sort SX for each X ∈ obj(C) and each sort S of L.
• A function symbols Sf : SX → SY for each f ∈ C[X,Y ] and each sort S.
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• Function symbols gX : SX → PX for each function symbol g : S → P in
L and X ∈ obj(C).

• Relations RX of sort SX for each relation R of sort S.
The theory TSL then consists of axioms which say:

(1a) For each sort S ∈ SL, if S∗(X) = SX for each X ∈ obj(C) and S∗(f) = Sf

for each f ∈ C[X,Y ] then S∗ is a presheaf.
(1b) For each relation R ∈ RL, if R∗ is defined similarly to S∗ then R∗ is a

presheaf and R∗ ⊆ S∗.
(2a) If I ∈ JC(A) and S ∈ SL, then (∀x, y ∈ SA)x = y ↔

∧
f∈I S

f (x) = Sf (y).
(2b) For each relation R ∈ RL and each I ∈ JC(A), (∀x ∈ SA)RA(x) ↔∧

f∈I R
dom(f)(Sf (x)).

(3) Each collection 〈gX : X ∈ obj(C)〉 is a natural transformation with respect
to the presheaf structure given in (1).

Conditions (1a) and (1b) guarantee that models of TSL in SET have presheaves
for sorts and relations. (2a) guarantees that these presheaves are separated. (3)
further guarantees that every model in ModLSL(TSL ,SET) gives rise to a model in
ModL(Sep(C, JC)). Lastly (2b) ensures that any such model is sheaf like.

It is also immediate that any sheaf like model in ModL(Sep(C, JC)) gives
rise to a model in ModLSL(TSL ,SET), that this operation of transforming a model
in ModL(Sep(C, JC)) into models in ModLSL(TSL ,SET) preserves maps, and this
operation induces the required equivalence of categories. �

Corollary 3.11. If (C, JC) is countable then TSL ∈ Lω1,ω(LSL).

Proposition 3.10 allows us to translate results about models ofModLSL(TSL ,SET)
into results about sheaf like models in ModL(Sep(C, JC)). But by Theorem 3.8 we
can then also translate results about models of ModLSL(TSL ,SET) into results about
models in ModL(Sh(C, JC)).

For simplicity we will assume from now on that L is a fixed countable language
and (C, JC) is a fixed countable weak site.

4. Definable Classes of Models

4.1. Σ1-Definable Classes of Models.

Definition 4.1. ϕX is a definable class of models if it is a formula (possibly
with parameters) such that

• If V is any standard model of ZF ∗ then V |=“ϕX(M) implies M is a sheaf
like model in ModL(Sep(C, JC))”.

• For all sheaf like models M,N ∈ ModL(Sep(C, JC)), if b(M) ∼= b(N)
then ϕX(M) if and only if ϕX(N).

We say a definable class is Σ1 (or ∆1) if ϕX is Σ1 (or ∆1).

Lemma 4.2. Suppose ϕX is a Σ1 definable class of models. Then the collection
of x ∈ModLSL(ω) such that

• xM ∈ModLSL(TSL ,SET).
• ϕ(k0(xM )) holds.

is a ΣΣΣ1
2 set of reals.
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Proof. By Proposition 2.3 and Proposition 3.10. �

Definition 4.3. If ϕX is a Σ1 definable class of models let ϕ̂X be the ΣΣΣ1
2

formula defined in Lemma 4.2.

There are a few simple results about Σ1-definable classes of models which
are worth stating explicitly.

Lemma 4.4. Σ1-definable classes of models are closed under finite intersection.

Definition 4.5. Suppose ϕ(x) is a formulas which is only satisfied by sheaf
like objects of ModL(Sep(C, JC)). Let ϕ(x) be the formula

(∃M ∈ModL(Sep(C, JC)))Iso(C,JC)(x,M) ∧ ϕ(M).

Lemma 4.6. If ϕ(x) is a Σ1-formula then so is ϕ(x). Further ϕ(x) is a Σ1-
definable class of models.

Proof. It is immediate by Lemma 3.9. �

This tells us if we have a Σ1-collection of sheaf like models, the class of sheaf
like models isomorphic to some element of our collection is a Σ1-definable class of
models.

Definition 4.7. Suppose L1 is the language with no function symbols or
relations and where SL1 = {S1} has only one sort. A definable class of sheaves is
a definable class of models in L1. I.e. a class of separated presheaves closed under
isomorphism in Sh(C, JC). We similarly define Σ1-definable classes of sheaves and
∆1-definable classes of sheaves.

Lemma 4.8. If X is a Σ1 (∆1)-definable class of sheaves and ModL(X) is the
formula describing those sheaf like models of L all of whose sorts are in X, then
ModL(X) is a Σ1 (∆1)-definable class of models.

Proof. Immediate. �

4.2. Models of L∞,ω. In this section we show that for any sentence T ∈
L∞,ω(L) the collection of models which satisfy T in ModL(Sh(C, JC)) forms a
∆1-definable class of models.

Definition 4.9. Let L∞,ω(L) be the smallest collection of formulas containing
all atomic formulas of L and closed under: finite quantification, negation, impli-
cation and set sized conjunctions and disjunctions with the condition that every
subformula of a formula of L∞,ω(L) can have at most finitely many free variables.
We let Lω1,ω(L) be the subset of L∞,ω(L) consisting of those formulas all of whose
conjunctions and disjunctions are countable.

Definition 4.10. If ϕ(x) ∈ L∞,ω(L) with a free variable of sort S and if
M ∈ ModL(D) then we define {x : D |= ϕ(x)}M ⊆ SM by induction in the
standard way (see [8]). If ϕ is a sentence in L∞,ω(L) then we we say that M |= ϕ
if {x : D |= ϕ}M ∼= 1.

Definition 4.11. If T ∈ L∞,ω(L) we then define ModL(T,D) to be the full
subcategory of ModL(D) consisting of those models which satisfy T .



14 NATHANAEL LEEDOM ACKERMAN

It is worth stressing that for a formula ϕ ∈ L∞,ω(L) and a sheaf like model M in
ModL(Sep(C, JC)), it is not necessarily the case that b({x : Sep(C, JC) |= ϕ(x)}M )
and {x : Sh(C, JC) |= ϕ(x)}b(M) are the same subobject. In particular it is not
necessarily the case that M satisfies the same sentences of L∞,ω(L) as b(M) does.

However, as we will see, for any model M ∈ModL(Sh(C, JC)), the satisfaction
relation between M and sentences of L∞,ω(L) is absolute.

Proposition 4.12. Suppose V0 ⊆ V1 are standard models of ZF ∗, ϕ(x) ∈
L∞,ω(L)V0 is a formula of sort S, and M ∈ ModL(Sh(C, JC))V0 . Further sup-
pose that M = b(M ′) where M ′ ∈ ModL(Sep(C, JC)) and is sheaf like. Then
b{x : Sh(C, JC) |= ϕ(x)}McV0 = b{x : Sh(C, JC) |= ϕ(x)}McV1 . I.e. the maximal
subpresheaf in the subobject {x : Sh(C, JC) |= ϕ(x)}M is independent of the model
of set theory we are working in.

Proof. We will prove this by induction on the complexity of the formula.

Base Case:
If ϕ(x) is a relation, R(x), then this follows by Lemma 2.27 and because M is the
image of a sheaf like model. If ϕ(x) := “f(x) = g(x)” for functions f, g ∈ FL,
then b{x : Sh(C, JC) |= ϕ(x)}cM is the equalizer of fM and gM in Sh(C, JC).
However as fM , gM are in the image of b, b{x : Sh(C, JC) |= ϕ(x)}cM is also
b{x : Sep(C, JC) |= ϕ(x)}cM which is absolute.

Inductive Case:
ϕ(x) =

∨
i∈I ψi(x): Let Xi = b{x : Sh(C, JC) |= ψi(x)}c (which is independent of

the model of set theory by the inductive hypothesis) and let X = {x : Sep(C, JC) |=∨
i∈I Xi}. For any A ∈ obj(C), X(A) =

⋃
i∈I Xi(A) (which is also independent

of the model of set theory). We then have b{x : Sh(C, JC) |=
∨
i∈I Xi}c =

a(X) ∩ SM = bXc (in either V0 or V1). But bXcV0 = bXcV1 by Lemma 2.27
and so b{x : Sh(C, JC) |=

∨
i∈I Xi}cV0 = b{x : Sh(C, JC) |=

∨
i∈I Xi}cV1 .

ϕ(x) =
∧
i∈I ψi(x): Identical to the case where ϕ(x) =

∨
i∈I ψi(x).

ϕ(x) = (∃f )ψi(y): Because M is the image of a sheaf like model (from b), f is
a map in Sep(C, JC). Let Y = b{y : Sh(C, JC) |= ψ(y)}c and let X = f [Y ]
in Sep(C, JC). Then b{x : Sh(C, JC) |= (∃f )ψ(x)}c = a(X) ∩ SM = bXc. But
bXcV0 = bXcV1 by Lemma 2.27.

ϕ(x) = (∀f )ψi(y): Suppose f : S0 → S1 and A ∈ obj(C). Further suppose
a ∈ SM1 (A). Let Xa = f−1(a) in Sep(C, JC). Then a ∈ b{x : Sh(C, JC) |=
(∀f )ψ(x)}c if and only if bXac ⊆ b{y : Sh(C, JC) |= ψ(y)}c. But this holds
if and only if Xa ⊆ b{y : Sh(C, JC) |= ψ(y)}c. Notice Xa is absolute and
b{y : Sh(C, JC) |= ψ(y)}c is absolute by the inductive hypothesis. So the statement
Xa ⊆ b{y : Sh(C, JC) |= ψ(y)}c is absolute. Hence b{x : Sh(C, JC) |= (∀f )ψ(x)}c
is absolute.

ϕ(x) = ψ(x)→ φ(x): Because for any subobjects A,B of E we have that (A ⇒
B) = ∀α(A ∧B) where α : A→ E is a monic and A ∧B is considered a subobject
of A.
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ϕ(x) = ¬ψ(x): Because for any subobjects A of E, ¬A = A → ⊥ and ⊥ is ab-
solute. �

Corollary 4.13. For any model M ∈ModL(Sh(C, JC))V0 and any sentence
ϕ ∈ L∞,ω(L)V0 , V0 |= “M |= ϕ” if and only if V1 |= “M |= ϕ”.

Proof. Because the satisfaction relation of L∞,ω(L) is closed under isomor-
phism, by Lemma 3.8 it suffices to restrict our attention to models of the form
M = b(M ′) where M ′ is sheaf like. But by Proposition 4.12, the satisfaction
relation is absolute for those models. �

Hence if Th(M) = {ϕ ∈ L∞,ω(L) : M |= ϕ} then Th(M)V0 = Th(M)V1 ∩ V0.

Definition 4.14. Suppose T ∈ L∞,ω(L). Let ModSLL (C, JC) be the full
subcategory of ModL(Sep(C, JC)) consisting of sheaf like models. Further let
ModSLL (T, (C, JC)) be the full subcategory of ModSLL (C, JC) consisting of mod-
els M such that b(M) |= T in Sh(C, JC).

Lemma 4.15. ModSLL (T, (C, JC)) is a ∆1-definable class of models.

Proof. First, as ModSLL (T, (C, JC)) is closed under isomorphism in Sh(C, JC)
(for sheaf like models) it suffices to prove that it is a ∆1 class. We know, by
Proposition 4.12, that for M ∈ModSLL (T, (C, JC)) the following are equivalent

• SET |= “b(M) |= T” in ModL(Sh(C, JC)).
• (∃W |= ZF ∗,W standard,M ∈W )W |= “b(M) |= T” inModL(Sh(C, JC)).
• (∀W |= ZF ∗,W standard,M ∈W )W |= “b(M) |= T” inModL(Sh(C, JC)).

�

5. Notions of Countable Sheaves

We are now ready say what we mean by a countable model. We will do this as
follows.

Definition 5.1. Suppose M ∈ModL(Sh(C, JC)) is a model of L. We say M
is countable if for each S ∈ SL, SM is a countable sheaf.

The astute reader will notice that this definition isn’t quite complete as we still
haven’t defined what we mean by a countable sheaf. Unfortunately it turns out that
there are four notions of countability which we want to consider: purely countable,
countably generated, monic countable and epi countable. We will discuss each of
these in this section. We will also refer to a model as being purely countable,
countably generated, etc. if it satisfies Definition 5.1 with the corresponding notion
of countable.

5.1. Purely Countable Sheaves.

Definition 5.2. We say thatA ∈ obj(Sh(C, JC)) is purely countable if |a(A)| =
ω (i.e. the sheafification of A is countable as a functor).

Lemma 5.3. A ∈ obj(Sh(C, JC)) is purely countable if and only if every sepa-
rated presheaf which is isomorphic to it (in Sh(C, JC)) is countable as a functor.

Proof. This is because every presheaf which is isomorphic to A in Sh(C, JC)
is isomorphic (in Sep(C, JC)) to a subpresheaf of a(A). �
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From a set theoretic point of view being a purely countable sheaf is a natural
notion and is absolute between standard models of set theory.

Proposition 5.4. There is a ΠΠΠ1
1 statement PC(x) which holds of if and only

if
(1) x ∈ModLSL1

(ω).

(2) xM |= TSL1
.

(3) S
k0(xM )
1 is a sheaf.

Proof. (1) and (2) are Borel properties so it suffices to show that (3) is a ΠΠΠ1
1

property. However (3) is equivalent to:
[For all 〈yi : i ∈ I〉 such that I ∈ JC(A) and (∀i ∈ I)yi ∈ x][there exists a
unique y ∈ x] such that y is covered by 〈yi : i ∈ S〉.

which is ΠΠΠ1
1 because (C, JC) is countable and so any compatible collection 〈yi : i ∈ I〉

can be encoded by a real. �

Corollary 5.5. For any countable language L there is a ΠΠΠ1
1 statement PCL(x)

which holds if and only if
(1) x ∈ModLSL(ω).
(2) xM |= TSL .
(3) Every sort of k0(xM ) is a sheaf.

Corollary 5.6. The collection of purely countable models is a ∆1-definable
collection of models.

Proof. As all ΠΠΠ1
1 formulas are absolute between standard models of ZF ∗ being

purely countable is absolute between standard models of ZF ∗. So a model M is
purely countable if either of the following equivalent statements holds:

• (∃W transitive)M ∈W and (W,∈) |=“ZF ∗ ∧M is purely countable”.
• (∃W transitive)M ∈W and (W,∈) |=“ZF ∗ ∧M is purely countable”.

�

Corollary 5.7. If (A is a purely countable sheaf)SET then A is a sheaf in all
standard models of ZF ∗ in which A is countable.

Proof. Because ΠΠΠ1
1 sentences are absolute between standard models of ZF ∗,

if x is a real encoding A (i.e. xM = A) then PC(x) holds in any standard model of
ZF ∗in which x exists. But in any standard model of ZF ∗ in which A is countable
there is some real encoding A. Hence in any standard model of ZF ∗ where A is
countable there is some real x encoding A with PC(x). Therefore in any standard
model of set theory where A is countable, A is a sheaf. �

While the notion of being purely countable is absolute from a set theoretic
point of view, it is unfortunately very sensitive to the underlying weak site (C, JC).
In particular it is not preserved by passing to an equivalent category of sheaves.

Lemma 5.8. If A ∈ Sh(C, JC) and A is not a subobject of 1 then there exists
a countable (D,JD) such that

• C ⊆ D, |obj(D) − obj(C)| = 1, JC(A) = JD(A) if A ∈ obj(C), and
|JD(∗x)| = 2 if ∗x 6∈ obj(C).
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• If i : C → D is the inclusion map, then i ◦ − : Sh(D,JD)→ Sh(C, JC) is
an equivalence of categories (with inverse i′).

• |i′(A)| has (at least) continuum many elements (and hence isn’t purely
countable).

Proof. By assumption there is some x ∈ obj(C) where |A(x)| > 1. Let D be
the free category generated by

• obj(D) = obj(C) ∪ {∗x}.
• D[y, z] = C[y, z] if y, z ∈ obj(C).
• D[x, ∗x] = {fxi : i ∈ ω} (where the fxi are new morphisms).
• D[y, ∗x] = {fxi ◦ g : g ∈ D[y, x]}.
• D[∗x, y] = ∅ if y ∈ obj(C) and D[∗x, ∗x] = id∗x .

We then let JD(y) = JC(y) if y ∈ obj(C) and JD(∗x) = {D[−, ∗x], Sx} where Sx is
the sieve generated by D[x, ∗x]. It is then immediate that i ◦ − is an equivalence
of categories as there is a unique way to extend any sheaf on (C, JC) to a sheaf on
(D,JD) which preserves all maps. Further, it is clear that the unique (non-total)
cover of ∗x induces a bijection (for any sheaf B on (D,JD)) between B(∗x) and
B(x)ω. Hence, as |A(x)| ≥ 2, we have i′(A)(∗x) has at least 2ω elements. �

A similar argument also shows

Lemma 5.9. For all (C, JC) there is a (D,JD) with C ⊆ D, |morph(D)| =
|ω×morph(C)|, Sh(C, JC) is equivalent to Sh(D,JD) but all purely countable objects
in Sh(D,JD) are subobjects of 1.

Not only is the notion of being purely countable very sensitive to the underlying
site, but we also have that, unlike in the case of a purely countable set, there are
sheaves which are not purely countable in any extension of the universe.

Corollary 5.10. There is a countable weak site (D,JD) such that the natural
number object in Sh(D,JD) is not purely countable in any standard model of set
theory.

5.2. Countably Generated. While the notion of being purely countable is
very dependent on the underlying weak site, there is a notion of countability which
is much less so. This is what we call being countably generated. While a sheaf is
purely countable if every object to which it is isomorphic (in Sh(C, JC)) is countable
(as a functor), a sheaf is countably generated if there is some object in Sh(C, JC)
to which it is isomorphic and which is countable as a functor.

Definition 5.11. We say that A ∈ obj(Sh(C, JC)) is countable generated if
there is an A∗ ∈ obj(Sh(C, JC)) such that 〈A∗, A, id〉 ≡ 〈A,A, id〉 in Sh(C, JC) on
|A∗| = ω (i.e. there is a countable A∗ which covers A).

Lemma 5.12. Suppose V0 ⊆ V1 are standard models of set theory. If A is
countably generated in Sh(C, JC)V0 then A is countably generated in Sh(C, JC)V1 .

Lemma 5.13. The collection of countably generated sheaves forms a Σ1-definable
class.

Proof. Because Sh(C, JC) is Σ1 definable, so is the property 〈A∗, A, id〉 ∈
Sh(C, JC). Further the collection of 〈A∗, A, id〉 such that |A∗| ≤ ω is Σ1 definable.

�
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Corollary 5.14. The collection of countably generated models in ModSLL (C, JC)
is a Σ1-definable class of models.

Proof. By Lemma 5.13 and because being countably generated is closed under
isomorphism (in ModL(Sh(C, JC))). �

However, unlike in the purely countable case, being countably generated is
preserved under equivalences of categories, at least as long as we restrict ourselves
to nice countable weak sites.

Lemma 5.15. Suppose A ∈ obj(Sh(C, JC)), C ⊆ D, |morph(D)−morph(C)| ≤
ω and i ◦ − : Sh(D,JD) ∼= Sh(C, JC) is an equivalence of categories. Then for any
A ∈ obj(Sh(C, JC)), i ◦A is countably generated if and only if A is.

Proof. If 〈A∗, A, id〉 ≡ 〈A,A, id〉 then 〈i ◦A∗, i ◦A, id〉 ≡ 〈i ◦A, i ◦A, id〉 and
|i ◦A∗| ≤ |A∗|. So if A is countably generated, so is i ◦A.

In the other direction, if 〈Ai, i◦A, id〉 ≡ 〈i◦A, i◦A, id〉 let A∗(U) = {x ∈ A(U) :
(∃V ∈ obj(C))(∃f ∈ D[U, V ])(∃y ∈ Ai(V ))A(f)(y) = x}. Then |A∗| = ω×|Ai| and
〈A∗, A, id〉 ≡ 〈A,A, id〉. So if i ◦A is countably generated so is A. �

We also have that every sheaf is countably generated in some model of set
theory.

Lemma 5.16. If A is an object of Sh(C, JC) then there is a forcing extension
where A is countably generated.

Proof. We always have 〈A,A, id〉 ≡ 〈A,A, id〉 so if |A| is countable then A
is countably generated. But we can always find a generic extension where |A| is
countable (as |A| = |{a : a ∈ A}| and {a : a ∈ A} is absolute). �

While the notion of being countably generated is independent of countable
changes to the site, it is not in general preserved under arbitrary equivalences of
categories.

Lemma 5.17. There is a (D,JD) such that C ⊆ D, (C, JC) is equivalent to
(D,JD), but no element of Sh(D,JD) (other than the initial element 0Sh(D,JD)) is
countably generated.

Proof. Let D be a category equivalent to C but where each object of C is
isomorphic to κ > ω many objects. Then if A is any separated presheaves for
(D,JD) (such that |A| 6= 0) then |A| ≥ κ > ω. So if A 6= 0Sh(D,JD) is an object of
Sh(D,JD) then A is not countably generated. �

5.3. Monic Countable. In this section we introduce the notion of monic
countability. This is the first of two notions of countability which are determined
solely by the existence of certain maps to/from the natural number object (and
hence are preserved by equivalence of categories).

Definition 5.18. Let N = (
∐
ω 1)Sep(C,JC). i.e. N = the coproduct of ω

many copies of the terminal object (in Sep(C, JC)).

Notice that b(N) is a natural number object in Sh(C, JC).

Definition 5.19. A sheaf A is monic countable if there is a monomorphism
(in Sh(C, JC)) from A into b(N).
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Lemma 5.20. The monic countable sheaves form a Σ1-definable class.

Proof. Notice that being monic countable is preserved by isomorphism. Fur-
ther, 〈d, r, f〉 : A → N is a monomorphism if and only if f is injective. So, as
Sh(C, JC) is Σ1 definable, so are the monic countable sheaves. �

Lemma 5.21. Every monic countable sheaf is countably generated.

Proof. Suppose A is monic countable and 〈d, r, f〉 : A → N is a monomor-
phism. Then d covers A and so 〈d,A, id〉 ≡ 〈A,A, id〉. But |d| = |f [d]| as f is
injective and |f [d]| ≤ |r| = |N | = ω (as |obj(C)| = ω). Hence A is countably
generated. �

Corollary 5.22. The monic countable models form a Σ1-definable class of
countably generated models.

Lemma 5.23. Being monic countable is preserved under equivalence of cate-
gories.

5.4. Epi Countable.

Definition 5.24. We say a sheaf A is epi countable if there is an epimorphism
in Sh(C, JC) from N onto A.

Lemma 5.25. The epi countable sheaves form a Σ1-definable class.

Proof. Notice that being epi countable is preserved by isomorphism. Further,
〈d, r, f〉 : b(N)→ A is an epimorphism in Sh(C, JC) if and only if f [d] covers A (i.e.
if and only if j(〈d, r, f〉)U : a(N)(U) → a(A)(U) is surjective for all U ∈ obj(C)).
If we let ϕe.c.(A) := ∃〈d, f [d], f〉 ∈ Sh(C, JC)[b(N), A] then ϕe.c.(A) ↔ A is epi-
countable. Hence, as Sh(C, JC)[b(N), A] is Σ1 definable we have ϕe.c.(A) is Σ1. �

Lemma 5.26. Epi countable sheaves are countably generated.

Proof. Suppose A is epi-countable and 〈d, r, f〉 ∈ Sh(C, JC)[N,A] is an epi-
morphism. Then f [d] covers A. Hence 〈f [d], A, id〉 ≡ 〈A,A, id〉. But d ⊆ N and
|N | = ω (as |obj(C)| = ω) so |f [d]| ≤ ω. Hence A is countably generated. �

Corollary 5.27. The epi countable models of L in Sh(C, JC) form a Σ1-
definable class of countably generated models.

Lemma 5.28. Being epi countable is preserved under equivalence of categories.

6. Number of Countable Models

We are now ready to prove our bounds on the number of countable models of
a sentence of L∞,ω(L). The following definitions will be useful

Definition 6.1. For x, y ∈ ModLSL(ω) let x ∼=Sh y if and only if k0(xM ) ∼=
k0(xM ) in ModL(Sh(C, JC)).

Definition 6.2. For x, y ∈ ModLSL(ω) let x ∼=Sep y if and only if k0(xM ) ∼=
k0(xM ) in ModL(Sep(C, JC)).
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Definition 6.3. Suppose ϕX is a Σ1-definable class of models. We say ϕX
has the Morley Property either there is a perfect set of ∼=Sh-inequivalent reals in
ϕ̂X or there are at most ω1 many ∼=Sh-inequivalent reals in ϕ̂X .

We say ϕX has the Weak Morley Property either there is a perfect set of ∼=Sh-
inequivalent reals in ϕ̂X or there are at most ω2 many ∼=Sh-inequivalent reals in
ϕ̂X .

Proposition 6.4. Suppose ϕX is a Σ1-definable class of countably generated
models. Then there are at most 2ω many isomorphism classes (for isomorphism in
ModL(Sh(C, JC))) in ϕX .

Proof. This follows immediately from Proposition 3.10 and the fact that there
are at most 2ω many countable models in ModLSL(T, SET). �

6.1. Purely Countable.

Lemma 6.5. For every model M ∈ModL(Sh(C, JC)) there is a unique (up to
isomorphism in ModL(Sep(C, JC))) model M ′ ∈ModL(Sep(C, JC)) such that

• M ′ is sheaf like.
• For all S ∈ SL, SM

′
is a sheaf for (C, JC).

• M ∼= b(M ′) (in ModL(Sh(C, JC))).

Proof. By Lemma 3.8 there is a sheaf like model M∗ such that M ∼= b(M∗).
If we let M ′ = i(a(M∗)), i.e the model obtained by applying the sheafification
functor a to M∗, then M ′ has the desired properties. Further it is unique up to
isomorphism in ModL(Sep(C, JC)) as i is fully faithful. �

Corollary 6.6. Two model M0,M1 ∈ ModL(Sh(C, JC)) are isomorphic if
and only if i(j(M0)), i(j(M1)) ∈ModL(Sep(C, JC)) are isomorphic.

The following Corollary collects much of what we have shown about purely
countable models.

Corollary 6.7. Suppose ModPCSL (C, JC) = {i(j(M)) : M ∈ModL(Sh(C, JC))
and M is purely countable} ⊆ModSLL (C, JC) then

• (∀M ∈ModL(Sh(C, JC)), M purely countable)(∃M ′ ∈ModPCSL (C, JC))b(M ′) ∼=
M (in ModL(Sh(C, JC))).

• (∀M0,M1 ∈ModPCSL (C, JC))b(M0) ∼= b(M1) in ModL(Sh(C, JC)) if and
only if M0

∼= M1 in ModL(Sep(C, JC)).
• (∀M ∈ ModPCSL (C, JC))(∃x ∈ ωω)PCL(x) and xM is isomorphic to M

in ModL(Sep(C, JC)).

Corollary 6.7 tells us that for the purposes of counting isomorphism classes in
ModL(Sh(C, JC)) of purely countable models, it suffices to consider models which
are encoded by reals satisfying PCL(x). However, when considering these models,
it also suffices to worry about isomorphism in ModL(Sep(C, JC)). This is important
as isomorphism between separated presheaves is, from a set theoretic point of view,
much simpler than isomorphism between sheaves.

Theorem 6.8. Let ϕD be any Σ1-definable class of purely countable models
with only hereditarily countable parameters. Then D has the Morley property.
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Proof. Let D∗ = ϕ̂D ∩ ModPCSL (C, JC). By Corollary 6.7 we know two
things. First, D∗ = {x ∈ ϕ̂D : PCL(x)} and second there is a bijection between
∼=Sep-isomorphism classes of reals in D∗ and ∼=Sh-isomorphism classes of reals in
ϕ̂D.

Claim 6.9. x ∼=Sep y is a ΣΣΣ1
1 relation on ModLSL(ω).

Proof. Because x ∼=Sep y if and only if xM ∼= yM as models of LSL (which is a
ΣΣΣ1

1 property). �

Claim 6.10. D∗ is a ΣΣΣ1
2 set of reals.

Proof. By Proposition 2.3 and the fact that PCL(x) is ΠΠΠ1
1. �

But by Proposition 2.12 these claims imply that D∗ contains either a perfect
set of ∼=Sep-inequivalent reals or at most ω1 many ∼=Sep-inequivalent reals. So by
Corollary 6.7 ϕ̂D contains either a perfect set of ∼=Sh-inequivalent reals or at most
ω1 many ∼=Sh-inequivalent reals and hence ϕD has the Morley property. �

Corollary 6.11. For any theory T ∈ Lω1,ω(L) the collections of purely count-
able models of T has the Morley property.

Proof. This follows from Theorem 6.8 because the purely countable models
satisfying T form a Σ1-definable class of models.

�

6.2. Countably Generated.

Lemma 6.12. ∼=Sh is a ΣΣΣ1
2 equivalence relation.

Proof. This follows Lemma 3.9 and Proposition 2.3. �

Theorem 6.13. Let ϕD be any Σ1-definable class of countably generated mod-
els with only hereditarily countable parameters. We then have the two results:

(1) If (∗#) holds then ϕD has the weak Morley property.
(2) If (∗B) holds then ϕD has the Morley property.

Proof. We know that ϕ̂D is a ΣΣΣ1
2 set by Lemma 4.2 and that ∼=Sh is ΣΣΣ1

2

by Lemma 6.12. (1) then follows from Proposition 2.8 and (2) then follows from
Proposition 2.9. �

Corollary 6.14. For any theory T ∈ Lω1,ω(L) the following hold.
(1) If (∗#) holds then the collection countably generated models which satisfy

T has the weak Morley property.
(2) If (∗B) holds then the collection countably generated models which satisfy

T has the Morley property.

6.3. Monic and Epi Countable. We know by Corollary 5.27 and Corollary
5.22 that the collection of monic and epi countable models are Σ1-definable classes
of countably generated models. Hence as an immediate consequence of Theorem
6.13 we have:

Corollary 6.15. For any theory T ∈ Lω1,ω(L) the following hold.
(1) If (∗#) holds then
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(a) The collection monic countable models which satisfy T has the weak
Morley property.

(b) The collection epi countable models which satisfy T has the weak Mor-
ley property.

(2) If (∗B) holds then
(a) The collection monic countable models which satisfy T has the Morley

property.
(b) The collection epi countable models which satisfy T has the Morley

property.

7. Vaught’s (and other) Conjectures

We end with a few conjectures.

7.1. Absoluteness of Isomorphism. In Lemma 6.12 we showed that the
isomorphism relation between reals encoding countably generated models was ΣΣΣ1

2.
As a consequence of this we see, by Shoenfield’s Absoluteness Theorem, that the
isomorphism relation between two countably generated models is absolute between
standard models of set theory which contain ωSET

1
12. However it is the authors

belief that we can remove the condition that ωSET
1 be in our standard model of set

theory when talking about absoluteness.

Conjecture 7.1. For any two models M and N in ModL(Sh(C, JC)) the
statement “M is isomorphic to N in ModL(Sh(C, JC))” is absolute between all
standard models of ZF ∗.

If this conjecture holds then it is possible to remove the large cardinal and
determinacy assumptions from Theorem 6.13.

Theorem 7.2. Let ϕD be a Σ1-definable class of countably generated models
with only a hereditarily countable parameter P . If Conjecture 7.1 holds and there
is a real Cohen generic over L[P ] then ϕD has the Morley property.

Proof. We define Iso∗(x, y) as the formula satisfying
• x, y ∈ModLSL(ω) and xM , yM |= TSL .
• For all E ⊆ ω × ω, if

– (ω,E) is a well-founded model of ZF ∗.
– {x, y, P} ⊆ tc(ω,E)

then tc(ω,E) |= x ∼=Sh y.

Claim 7.3. Iso∗(x, y) holds if and only if x ∼=Sh y.

Proof. The implication from left to right holds because ∼=Sh is upwards ab-
solute. The implication from right to left is immediate from Conjecture 7.1. �

Iso∗(x, y) is clearly a ΠΠΠ1
2 relation (and by Claim 7.3 an equivalence relation).

Let Iso∗D(x, y) ↔ Iso∗(x, y) ∨ [x 6∈ ϕ̂D ∧ y 6∈ ϕ̂D]. Iso∗D(x, y) is then also a ΠΠΠ1
2

equivalence relation as ϕ̂D is a ΣΣΣ1
2 set. So Iso∗D(x, y) is a co-ω1-Suslin equivalence

relation. By Proposition 2.6 it then follows that there are either a perfect set of
Iso∗D-inequivalent reals or there are at most ℵ1 many Iso∗D-inequivalent reals.

12In fact it can be shown that for any two models M and N (not necessarily countably
generated), the statement “M is isomorphic to N” is absolute between standard models which

contain the ordinals.
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But as x ∼=Sh and Iso∗D agree on ϕ̂D (by Claim 7.3) we therefore have ϕD has
the Morley property. �

Corollary 7.4. Suppose T ∈ Lω1,ω(L), there is a real Cohen generic over
L[(C, JC), L, T ]13 and Conjecture 7.1 holds. Then

(a) The collection countably generated models which satisfy T has the Morley
property.

(b) The collection monic countable models which satisfy T has the Morley
property.

(c) The collection epi countable models which satisfy T has the Morley prop-
erty.

7.2. Absoluteness Conjecture. In [10] Morley proved more than just that
there is a trichotomy of options for the number of countable models of a sentence
of Lω1,ω(L). He showed that, for any particular sentence T ∈ Lω1,ω(L), which of
the trichotomy was realized was independent of the standard model of set theory
where it was considered.

It seems reasonable that this would hold for models in a category of sheaves
as well. So we make the following conjecture:

Conjecture 7.5. For any sentence T ∈ Lω1,ω(L) and any countable weak
site (C, JC) the following cardinalities are each independent of the standard model
of set theory where we consider them:

• The number of purely countable models of T in Sh(C, JC).
• The number of countable generated models of T in Sh(C, JC).
• The number of monic countable models of T in Sh(C, JC).
• The number of epi countable models of T in Sh(C, JC).

We now prove partial absoluteness result for the number of purely countable
models. For the purpose of this result let (¬CH)∗ be the statement:

• There exists an i : ω2 → 2ω where i is an injection14.

Lemma 7.6. Suppose E ⊆ ωω × ωω is a ΣΣΣ1
1 equivalence relation on ωω and

that X ⊆ ωω is a ΣΣΣ1
2 set. Then the statement:

There exists a perfect set of E-inequivalent reals in X.
is absolute between standard models of set theory which satisfies (¬CH)∗ and con-
tains ωSET

1 .

Proof. Let L≤ be the language of linear orders and LO ⊆ModL≤(ω) be the
collection of linear orders. Let T (x, y) be a tree on (ω × ω) × ω such that for all
x, y ∈ ωω

E(x, y)⇔ T (x, y) is ill-founded.
There is a ΣΣΣ1

1 set E′ ⊆ ωω × ωω × LO such that E′(x, y, α) = ¬(‖T (x, y)‖ < α) if
α is well-founded.

We also know (by Theorem 25.19 of [6]) that there is a ∆∆∆1
1 subset DX ⊆

ωω × ωω × LO such that if D′(x, a) = (∀y ∈ ωω)DX(x, y, a) then
• X(x)↔ (∃α < ω1)D′(x, α)

13The first L represents the constructible universe while the second L is the language

we are working in.
14This is equivalent to ¬CH in the presence of the axiom of choice.
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• For all well-founded α ∈ LO, D′(x, α) is a Borel relation.
Further the Borel code of DX is dependent only on the formula describing X (i.e.
is independent of the standard model of set theory we are working in).

Notice the following statement is ΣΣΣ1
2:

(?) (∃β, γ ∈ LO)(∃ perfect set of reals S)(β, γ are well-founded) ∧ (∀x ∈
S)D′(x, γ) ∧ (∀x, y ∈ S)¬E′(x, y, β)

Hence, by Shoenfield’s Absoluteness Theorem (see Theorem 25.20 of [6]), (?) is
absolute between standard models of set theory which contain the ωSET

1 . Hence it
suffices to prove the following claim:

Claim 7.7. Suppose V is a standard model of set theory satisfying (¬CH)∗.
Then (?) is equivalent to the statement “There are a perfect set of E-inequivalent
reals in X”.

Proof. The implication from left to right is immediate.
Assume that there are a perfect set of E-inequivalent reals in X in V . Let G

be a generic such that V [G] |= |ℵV1 | = ℵ0 and |(2ω)V | ≥ |ℵV2 | ≥ ℵ1. We then have
EV [G] ∩ V = EV . Similarly we have XV [G] ∩ V = XV and [D′(−, β)]V [G] ∩ V =
[D′(−, β)]V for any β ∈ ωV1 . But in V [G] we have that Eω

V
1 is a Borel equivalence

relation (by Lemma 30.10 of [6]) and has more than countably many equivalence
classes on D′(−, ωV1 )V [G] =

⋂
α<ωV1

D′(−, α)V [G] (which is also a Borel set). Hence,

by a theorem of Silver (see Theorem 32.1 of [6]), there is a perfect set of Eω
V
1 -

inequivalent reals on D′(−, ωV1 ) in V [G]. So V [G] |= (?) and by absoluteness we
then also have that V |= (?). �

�

The above proof follows closely the proof of Theorem 32.9 of [6] (which is a theorem
of Burgess).

In general we cannot remove (¬CH)∗ from the assumption. To see this notice
that if L is the constructible universe then RL is a Σ1

2 set of reals. However in L,
RL contains a perfect set (and hence a perfect set of =-inequivalent reals) while
there are generics G such that L[G] |= |RL| = ω.

Corollary 7.8. Let ϕD be any Σ1-definable class of purely countable models
with only hereditarily countable parameters. Then whether or not ϕ̂D has a perfect
set of ∼=Sh-inequivalent reals is absolute between standard model of set theory which
satisfies (¬CH)∗ and contain ωSET

1 .

Proof. This follows immediately from the proof of Theorem 6.8 and Lemma
7.6. �

7.3. Topos Vaught’s Conjecture. Over the years Vaught’s conjecture has
been studied in ever widening contexts, such as “Vaught’s conjecture for Lω1,ω(L)”
and the “Topological Vaught’s Conjecture”. Each time Vaught’s conjecture is ex-
tended to a new area, we obtain access to a new collection of techniques for it’s
study.

In this section we present a new generalization of Vaught’s conjecture. It is
our hope that the study of Vaught’s conjecture in this context will shed light on
the original conjecture as well as its variants.
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Definition 7.9. Let (C, JC) be a countable weak site and let L be a countable
language. Suppose ϕD is a Σ1-definable class of models in ModL(C, JC). We then
say ϕD has the Vaught Property if either:

• There is a perfect set of ∼=Sh-inequivalent reals in ϕ̂X .
• There are at most ℵ0 many ∼=Sh-inequivalent reals in ϕ̂X .

Definition 7.10. We say a countable weak site (C, JC) has the Vaught prop-
erty if the for every countable language L and every T ∈ Lω1,ω(L) the collections of
purely countable, countably generated, monic countable and epi countable models
of T all have the Vaught property.

In particular, a weak site has the Vaught property if, inside the category of
sheaves on the weak site, Vaught’s conjecture holds for any of the four notions of
countable presented in this paper. It isn’t hard to see that there are weak sites
which have the Vaught property.

Proposition 7.11. There is a countable weak site (C, JC) which satisfies:
• JC has only identity sieves (so Sh(C, JC) = SETC

op

).
• For every sheaf A the following are equivalent:

– A is purely countable.
– A is countably generated.
– A is monic countable.
– A is epi countable.

• (C, JC) has the Vaught property.

Proof. Let C be the set ω treated as a category. Fix T ∈ Lω1,ω(L), for some
countable language L, and let ϕT be the collection of countably generated models
of T in SETC

op

. (Note ϕT is also the collection of purely countable, epi countable
and monic countable models of T in SETC

op

.)
A model of T in SETC

op

consists of ω many models of T in SET. In particular
a model of T in SETC

op

is in ϕT if and only if each of the corresponding models in
SET are countable.

We now break into two cases. First suppose that T has at least two countable
models in SET. Then T must have at least 2ω many countably generated models
in SETC

op

. And in particular ϕ̂T must have a perfect set of ∼=Sh-inequivalent reals.
On the other hand suppose T has at most one countable model in SET. Then T
has at most one countably generated model in SETC

op

and so ϕ̂T is either empty
or has no ∼=Sh-inequivalent reals.

Hence, (C, JC) has the Vaught property. �

In the other direction we then also have:

Proposition 7.12. The following are equivalent.
• Vaught’s Conjecture.
• The terminal site15 has the Vaught property.

This suggests the following generalization of Vaught’s conjecture (which implies
the actual Vaught’s conjecture).

Conjecture 7.13 (Topos Vaught’s Conjecture). Every countable weak site
(C, JC) has the Vaught property.

15The terminal site is the unique site on the category with one object and one morphism.
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