1. Show that a regular map of quasiprojective varieties is continuous with respect to the Zariski topology.

2. This problem expands the notion of irreducibility that we have developed so far. We say that a nonempty topological space X is irreducible if whenever $X = X_1 \cup X_2$ for closed sets X_1 and X_2, we have $X_1 = X$ or $X_2 = X$. We say that a subset U of X is irreducible if it is irreducible with respect to the induced topology.

 (a) Let $U \subseteq X$ be a subset. Show that U is irreducible if and only if its closure \overline{U} is.

 (b) Show that a continuous map $X \to Y$ sends irreducible sets of X to irreducible sets of Y.

3. (Shafarevich, exercise 1.4.10) Let $d,n \geq 1$ and let $N = \binom{d+n}{n} - 1$. Show that the image of $\mathbb{P}_\mathbb{C}^n \to \mathbb{P}_\mathbb{C}^N$ under the d-fold Veronese embedding is not contained in any proper linear subspace of \mathbb{P}^N.

4. (Reid Undergraduate algebraic geometry exercise 5.13) Now let’s study in greater detail the Veronese surface S, defined as the image of $\phi : \mathbb{P}_\mathbb{C}^2 \to \mathbb{P}_\mathbb{C}^5$ given by

 $$(x : y : z) \mapsto (x^2 : xy : xz : y^2 : yz : z^2).$$

Show that ϕ is an isomorphism $\mathbb{P}^2 \to S$ by writing down equations of the inverse map. Prove that ϕ sends the lines of \mathbb{P}^2 to conics sitting inside 2-planes in \mathbb{P}^5.

Now for any line $\ell \subset \mathbb{P}^2$, write $\pi(\ell) \subset \mathbb{P}^5$ for the 2-plane spanned by the conic $\phi(\ell)$. Prove that the union of $\pi(\ell)$ taken over all $\ell \subset \mathbb{P}^2$ is a cubic hypersurface $\Sigma \subset \mathbb{P}^5$. In fact, identifying S with the projectivization of the rank 1 locus of a symmetric 3×3 matrix M in the 6 coordinates of \mathbb{P}^5, show that $\Sigma = V(\det M)$.