1. Let Δ be a collection of subsets of $\{1, \ldots, n\}$ such that if $S \in \Delta$ and $T \subseteq S$ then $T \in \Delta$. For $i = 1, \ldots, n$, let f_i denote the number of sets in Δ of size i. Let

$$I_{\Delta} = \langle \prod_{j \in S} x_j : S \subseteq \{1, \ldots, n\}, S \not\in \Delta \rangle \subset k[x_1, \ldots, x_n].$$

Compute the Hilbert polynomial of $k[x_1, \ldots, x_n]/I_{\Delta}$.

2. Compute the Hilbert polynomial of the image of a hypersurface of degree D in \mathbb{P}^n under the d^{th} Veronese embedding.

3. Show that for any homogeneous ideal $I \subseteq k[x_1, \ldots, x_n]$, there is a monomial ideal J whose Hilbert function is the same as the Hilbert function of I.

Three exercises on lines in \mathbb{P}^3.

5. E-H Exercise III-67

6. E-H Exercise III-68

7. E-H Exercise III-69