TOWARDS A TOPOLOGICAL PROOF OF THE FOUR COLOR THEOREM V

OLIVER KNILL

Abstract. Here is an outline of the global proof. See [1, 2].

• Make \(G \) cobordant to \(\overline{G} \), the completed dual graph.
• Now fill in an interior vertex \(v_0 \) and connect to \(\overline{G} \). We have now a ball which has \(G \) as boundary.
• Clean out \(S(v_0) \) to make it Eulerian.
• Take \(x_1 \in V(\overline{G}) \). Its unit sphere \(S(x_1) \) intersects \(G \) in a vertex, edge or triangle. Define \(U_1 = \{ S(x_0) \} \)
• Clean out \(S(x_1) \) to make it Eulerian. Now take an other vertex \(x_2 \) in \(S(x_0) \cap S(x_1) \) and define \(U = (B(x_0) \cap B(x_1)) \cap S(x_2) \).
• Clean out \(S(x_2) \) to make it Eulerian. Continue like this without modifying edges in \(S(x_0) \), nor edges in \(G \).
• We have to complete things in such a way that at any time we have only to complete a region.
REFERENCES