Semidirect products are split short exact sequences

Chit-chat 16.1. Last time we talked about short exact sequences

\[G \to H \to K. \]

To make things easier to read, from now on we’ll write

\[L \to H \to R. \]

The \(L \) is for left, the \(R \) is for right. Since \(L \to H \) is injective, from now on we’ll identify \(L \) with its image in \(H \) for simplicity of notation.

Note there is no way to think of \(R \) as a subgroup of \(H \) a priori. For instance, in the example

\[\mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \]

the second copy of \(\mathbb{Z}/2\mathbb{Z} \) doesn’t naturally “embed” back into \(\mathbb{Z}/4\mathbb{Z} \).

Proposition 16.2. The above short exact sequence doesn’t split.

Proof. \(\mathbb{Z}/2\mathbb{Z} \) only has elements of order 1 and 2, so no homomorphism \(j : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \) can have an image containing elements of order \(\geq 3 \). \(^1\)

But let’s observe that both \([1]\) and \([3]\) are elements of order 4 inside \(\mathbb{Z}/4\mathbb{Z} \):

\[\langle [1] \rangle = \{ [1], [2], [3], [0] \}, \quad \langle [3] \rangle = \{ [3], [6] = [2], [5] = [1], [0] \}. \]

Hence any homomorphism \(j : \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \) must have image contained in \(\{ [0], [2] \} \subset \mathbb{Z}/4\mathbb{Z} \). But this is the kernel of the map from \(\mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \) above; so no \(j \) could factor the identity map of \(R = \mathbb{Z}/2\mathbb{Z} \). \(\square \)

Here’s a more dramatic example:

Example 16.3. The short exact sequence

\[\mathbb{Z} \xrightarrow{x_n} \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z} \]

does not split for any \(n \neq -1, 0, 1 \). \(^2\)

\(^1\) After all, if \(g^n = 1 \), we must have that \(j(g)^n = 1 \) as well.

\(^2\) Any homomorphism from \(\mathbb{Z}/n\mathbb{Z} \) must send an element of order \(n \) to some element of finite order. But \(\mathbb{Z} \) has no element of finite order except 0, so there is no injection from \(\mathbb{Z}/n\mathbb{Z} \) to \(\mathbb{Z} \).
Chit-chat 16.4. Since this is our first time trying to understand short exact sequences, let’s try to analyze the case where we are allowed to think of R as a subgroup of H. If both L and R are inside H, maybe you’ll buy the philosophy more that H is “built up” from L and R. So we come to the definition we ended with last time:

Definition 16.5. A short exact sequence splits if there is a group homomorphism $j : R \to H$ such that the composition $R \xrightarrow{j} H \to R$ is equal to id_R. We will call a choice of $j : R \to H$ a splitting.

Chit-chat 16.6. So if the short exact sequence is given by homomorphisms $\phi : L \to H, \psi : H \to R$, the definitions says that $\psi \circ j = id_R$. In particular, j is an injection.

Chit-chat 16.7. In the above example, clearly there is no way to think about $\mathbb{Z}/n\mathbb{Z}$ as a subgroup of \mathbb{Z}.

Chit-chat 16.8. So we have a new idea. We’d like to be able to recognize semidirect products in nature, and we’d like to be able to produce examples! Let’s analyze.

As before, let’s identify R with $j(R)$ when we have a split short exact sequence. Well, every element of R defines an action on H itself by conjugation: $h \mapsto rhr^{-1}$. But since L is normal, $rLr^{-1} = L$, so this defines an action on L, via $C_r : l \mapsto rlr^{-1}$.

Moreover, this is a group isomorphism from L to itself. As you showed in your homework, this defines a group homomorphism $R \to \text{Aut}(L)$ given by $r \mapsto C_r$. So any splitting gives rise to a homomorphism $R \to \text{Aut}(L)$.

Question 16.9. Fix two groups R and L. The natural question is: Does any homomorphism $R \to \text{Aut}(L)$ give rise to a split exact sequence?

Chit-chat 16.10. Another observation is that, given a splitting, both R and L become subgroups of H. Moreover, their intersection consists only of 1_H—after all, if a non-identity element $l \in L \cap R$, then the map $R \to H \to R$ could not be injective (l would be in the image of R, hence in the kernel of $H \to L$). Finally, since the orbits of the L action span H itself, we see that $H = \bigcup_{r \in R} Lr$. That is, $H = LR$.

3Here, $\text{Aut}(L)$ refers to the group of group automorphisms; not of set automorphisms.

4See below.
Definition 16.11. Let L, R be subgroups of H. We let

$$LR = \{ g \text{ such that } g = lr \text{ for some } l \in L, r \in R \}.$$

Question 16.12. Fix $L, R \subset H$. If $L \cap R = \{1\}$, $L \subset H$ is normal, and $LR = H$, is H a semidirect product of L and R?

What good questions we ask, when the answers are yes!

Theorem 16.13. Fix a normal subgroup $L \subset H$, and let $R \cong H/L$. The following are equivalent:

1. A homomorphism $j : R \to H$ splitting a short exact sequence $L \to H \to R$.
2. An isomorphism $R \to R'$ to a subgroup $R' \subset H$ such that $R' \cap L = \{1\}$ and the set map $L \times R' \to H$ is a surjection.
3. A group homomorphism $\phi : R \to \text{Aut}(L)$.

Proof. Another time. \qed

Chit-chat 16.14. Of these, my favorite interpretation is the last. It's because it has no reference to the group H—once you construct a group homomorphism $\phi : R \to \text{Aut}(L)$, one can construct a short exact sequence $L \to H \to R$.

What is the group operation on H in terms of R and L?

Proposition 16.15. Fix a homomorphism

$$\phi : R \to \text{Aut}(L), \quad r \mapsto \phi_r.$$

Then

1. the following defines a group structure on the set $L \times R$:

$$(l_1, r_1) \cdot (l_2, r_2) := (l_1 \cdot \phi_{r_1}(l_2), r_1 r_2).$$

Moreover,

2. The set $\{(l, 1)\}$ is a normal subgroup isomorphic to L,
3. The set $\{(1, r)\}$ is a subgroup isomorphic to R.

Definition 16.16. Given $\phi : R \to \text{Aut}(L)$, we will write

$$L \rtimes_{\phi} R$$

to be the group defined in the above proposition. We call it the semidirect product of L by R. When ϕ is implicit, we will drop the subscript and simply write

$$L \rtimes R.$$
Proof. Clearly, \((1, 1)\) is the identity element, since \(\phi_1 = \text{id}_L\). Likewise, the inverse to \((l, r)\) is the element \((\phi_r^{-1}(l^{-1}), r^{-1})\):

\[
(\phi_r^{-1}(l^{-1}), r^{-1}) \cdot (l, r) = (\phi_r^{-1}(l^{-1}) \cdot \phi_r^{-1}(l), r^{-1}r) = (\phi_r^{-1}(l^{-1}l), r^{-1}r) = (1, 1).
\]

and

\[
(l, r) \cdot (\phi_r^{-1}(l^{-1}), r^{-1}) = (l\phi_r(\phi_r^{-1}(l^{-1})), rr^{-1}) = (ll^{-1}, rr^{-1}) = (1, 1).
\]

I’ll leave it to you to check associativity. \(\square\)

Chit-chat 16.17. Next time, we’ll study the symmetries of the regular \(n\)-gon. This group can be written as a semi-direct product.

1. Some practice

Exercise 16.18. If \(L\) and \(R\) are finite groups, and if one has a short exact sequence \(1 \to L \to H \to R \to 1\), verify that \(|H| = |L| \cdot |R|\).

Exercise 16.19. If \(L\) is an abelian group, show that the “inversion” map \(a \mapsto a^{-1}\) is a group automorphism. Show that this defines a group homomorphism \(\mathbb{Z}/2\mathbb{Z} \to \text{Aut}(L)\).

Exercise 16.20. Convince yourself that all the non-splitting short exact sequences from this lecture really don’t split.

2. Proof that \(H = LR\)

By request, here is a more detailed proof that \(H = LR\) when the SES splits.

Lemma 16.21. Let \(L \to H \xrightarrow{\psi} R\) be a short exact sequence. Let \(q : H \to H/L\) be the quotient homomorphism sending \(h \mapsto Lh\). Then there exists an isomorphism \(z : H/L \to R\) such that \(z \circ q = \psi\). (That is, there exists a \(z\) so
that the diagram

\[
\begin{array}{ccc}
H & \xrightarrow{\psi} & R \\
\downarrow{q} & & \nearrow{z} \\
H/L.
\end{array}
\]

is commutative.)

Once we have the lemma, we have

Corollary 16.22. If \(j : R \to H \) is a splitting of the \(L \to H \to R \), then

\[H = \bigcup_{r \in R} Lj(r). \]

Proof of Corollary. By definition of splitting, we have that \(\psi \circ j = \text{id}_R \). On the other hand, we know that \(\psi = z \circ q \) by the Lemma, so we have

\[z \circ q \circ j = \text{id}_R. \]

Since \(z \) is a group isomorphism, its inverse is a homomorphism, and we have an equality of homomorphisms

\[q \circ j = z^{-1}. \]

Now we interpret the map \(q \circ j \). The homomorphism \(q \) sends \(h \mapsto Lh \). So the composite \(q \circ j \) sends \(r \) to the coset \(Lj(r) \in H/L \). Well, \(z^{-1} \) is a bijection onto \(H/L \), so for any coset \(Lh \in H/L \), we have a unique \(r \in R \) for which \(Lh = Lj(r) \). Since

\[\bigcup_{H/L} Lh = H, \]

this proves that

\[\bigcup_{r \in R} Lj(r) = H. \]

In the notes above, we identified elements \(r \in R \) with their image in \(H \) using \(j \), so we wrote this as

\[\bigcup_{r \in R} Lr = H. \]

\[\square \]