This problem set is due Wednesday, Feb.17 in class, together with problems 6 and 7 of Homework #2.

1. Solve Problem #18 on p.27–28 of the textbook. For part (a) can you prove the identity using finite differences instead of the principle of inclusion and exclusion? [You may know part (b) already; some 15 years ago it also appeared on the Qualifying Exam for graduate students.]

2. Solve Problem #16 on p.27 (this involves arguments similar to those we'll use in analyzing arcs and ovals).

3. Let \(k \) be the finite field of \(q \) elements where \(q \equiv 3 \mod 4 \), and let \(G \) be the group of \((q^2 - q)/2\) permutations of \(k \) of the form \(x \mapsto a^2x + b \) where \(a, b \in k \) and \(a \neq 0 \). Prove that while \(G \) is not doubly transitive, \(G \) does act transitively (indeed simply transitively) on unordered pairs of elements of \(k \). Use this to give an alternative verification of Paley’s construction of a Hadamard 2-design.

4. Let \(F \) be a perfect (but not necessarily finite) field\(^1\) of characteristic 2, and \(C \subset {\mathbf P}^2(F) \) the conic \(xz = y^2 \), i.e. \((x : y : z) = (r^2 : rs : s^2) \) for \((r : s) \in {\mathbf P}^1(F)\).\(^2\) Determine for each point on \(C \) the tangent through \(C \), and find the point \(P \in {\mathbf P}^2(F) \) at which all the tangents meet. Check algebraically that any point \(P' \neq P \) in the projective plane lies on a unique tangent. [Our combinatorial techniques don’t apply when \(F \) is infinite.]

5. Now let \(F \) be a finite field of \(2^n \) elements, and let \(d \) be an integer relatively prime to \(n \). Prove that the subset of \({\mathbf P}^2(F) \) consisting of \((1 : 0 : 0), (0 : 1 : 0), \) and all points of the form \((x : y : z) = (a^{2d} : a : 1) \) \((a \in F)\) is a hyperoval, and is an extended conic (a conic together with its center) if and only if \(d \equiv \pm 1 \mod n \). Conclude that if \(n = 5 \) or \(n > 6 \) then \({\mathbf P}^2(F) \) contains hyperovals that are not extended conics.

6. Recall that the “girth” of a graph is the length of its shortest cycle. Prove that a regular graph of degree \(d \) and girth 6 has at least \(2(d^2 - d + 1) \) vertices, with equality possible if and only if there is a finite projective plane of order \(d - 1 \). For instance there is up to isomorphism a unique cubic graph\(^3\) of girth 6 on 14 vertices (the “Heawood graph”); what is its automorphism group? Show that this is also the graph obtained by tiling the torus with seven pairwise adjacent hexagons.

\(^1\)Recall that a field \(k \) called is \emph{perfect} if every finite extension of \(k \). This condition is automatic if \(k \) has characteristic zero, while in characteristic \(p \) it is equivalent to the condition that \(k = k^p \), i.e. every field element is of the form \(c^p \) for some \(c \in k \) (unique because \(c^p - c^q = (c - c')^p \). This is automatic for finite fields but may fail in general, e.g. \(F_p(X) \) is not perfect since \(X \) is not a \(p \)-th power.

\(^2\)Remember that the notation \((x : y : z) = (r^2 : rs : s^2) \) means that there exists \(c \in k \) such that \((x, y, z) = c(r^2, rs, s^2); \) in general we cannot assume that \((x, y, z) = (r^2, rs, s^2) \) (with \(c = 1 \).

\(^3\)“cubic graph” is standard graph theory lingo for “regular graph of degree 3”.