Since we’re studying finite combinatorial structures, we’ll have to do algebra and linear algebra over finite fields. The most familiar of these are the prime fields $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ where $p \in \mathbb{Z}$ is a prime. In general any finite field F contains a unique prime field, consisting of all the elements of F of the form $1 + 1 + \ldots + 1$. The size, call it again p, of this prime field is the characteristic of F. Since F is a vector space over \mathbb{F}_p, we have $#F = p^n$ for some natural number n (namely the dimension of that vector space). We cite without proof the following fundamental theorem, due in essence to Galois:

For each prime p and integer $n \geq 1$ there exists a finite field F of cardinality p^n. This field is unique up to isomorphism. The automorphism group of F is canonically isomorphic with $\mathbb{Z}/n\mathbb{Z}$ and is generated by the Frobenius automorphism $x \mapsto x^p$. For each positive divisor m of n, that field contains a unique subfield F_1 of cardinality q^m, namely $\{x : x^{q^m} = x\}$. The field extension F/F_1 is normal, with cyclic Galois group of order m/n generated by $x \mapsto x^{p^m}$.

We shall use \mathbb{F}_q for the finite field of cardinality $q = p^n$; the older notation $\text{GF}(q)$ for \mathbb{F}_q (“GF” as in “Galois field”) is still occasionally seen in the literature. These fields are a natural and important generalization of the familiar prime fields \mathbb{F}_p; in general anything that can be done with \mathbb{F}_p works just as well with \mathbb{F}_q, and sometimes one can do a bit more with the non-prime fields thanks to the nontrivial automorphisms (as is true for \mathbb{C}, which though less familiar than \mathbb{R} turns out to be equally fundamental and sometimes more tractable). For example, you probably know that for every prime p there is at least one “primitive residue” mod p, which is to say that the multiplicative group \mathbb{F}_p^\ast is cyclic; the same is true (with much the same proof) for \mathbb{F}_q^\ast for any finite field \mathbb{F}_q. Warning: once $n > 1$, the finite field of p^n elements is not $\mathbb{Z}/p^n\mathbb{Z}$ (and its additive group is not cyclic).

Except for the familiar prime fields (with $n=1$), the only finite fields we shall have much use for are \mathbb{F}_4 and \mathbb{F}_9; these may be defined as the quadratic extensions $\mathbb{F}_2(\rho)$ and $\mathbb{F}_3(i)$ of their prime fields, where $\rho^2 + \rho = 1$ and i is a square root of -1.