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ERIC PETERSON

(Throughout, H ∗ will default to mod-2 cohomology.)

1. A HIGHLY INTERESTING SPACE

We begin with a love letter to RP∞. Its first appearance in the theory of algebraic topology comes about via the
Steenrod operations: for any space X there is a natural map

Sq : H ∗X →H ∗X ⊗H ∗RP∞ ∼=H ∗X ⊗F2[t].

The squaring operations themselves appear as coefficients in the resulting polynomial:

Sq x =
deg x
∑

n=0

Sqn(x)t n .

All of the standard properties but the Adem relations can be quickly deduced from a formal presentation. To get
the Adem relations, one winds up investigating the Steenrod module structure of H ∗RP∞ itself:

• • • • • • • • • • • • • • • • • • • • • • • • • •

FIGURE 1. The Steenrod module structure of H ∗RP∞−1 with Sq1, Sq2, Sq4, Sq8, and Sq16 drawn.

This module is visibly highly periodic. In order to explore this, we set RPn
k

to be the finite complex RPn/RPk−1

— i.e., the part of RP∞ whose cells lie in dimensions k through n. These complexes come with cofiber sequences
which interrelate them; for 0≤ k ≤ m < n, there is the sequence

RPm
k →RPn

k →RPn
m+1.

If we consider the complexes RPn
n−2, then up to shift we have the following four Steenrod modules:

• • •, • • •, • • •, • • •.

FIGURE 2. The Steenrod module structures for RP3+4n
1+4n , RP4+4n

2+4n , RP5+4n
3+4n , and RP6+4n

4+4n .
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This sequence of four modules repeats itself as n varies, and this is one precise way that we can describe the peri-
odicity seen. Another observation is that we can formally extend these patterns to the left — that is, there could
be some fictional space with negative dimensional cells continuing the picture above. (For instance, we have drawn
in the −1 cell at the extreme left of the diagram. It appears to be highly interesting, evidenced by the number of
squaring operations it simultaneously supports.) Atiyah and James have made concrete both of these observations:

Theorem (Atiyah). There is a homeomorphism Thom(RPn ;L ) ∼= RPn+1, where L denotes the tautological line
bundle on RPn . More generally,

Thom(RPn ; kL )∼=RPn+k
k

.

In particular, taking Thom spectra and setting k to be a negative integer gives complexes with negative dimensional cells.1

Theorem ( James). There is a function f (n− k) taking values in powers of 2 such that

RPn
k 'Σ

− f (n−k)RPn+ f (n−k)
k+ f (n−k)

.2

James’s theorem is actually much stronger than what has been described so far: not only is there a periodicity of
Steenrod modules, but actually one of cell complexes. The primary attaching map of a cell in a RP∞ is the value of

Sn RPn RPn−k Sn−kin

for as large a value of k as the map in can be lifted across the inclusion RPn−k → RPn . Here is a diagram of the
primary attaching maps in RP∞:

• • • • • • • • • • • • • • • • • • •
2 2 2 2 2 2 2 2 2

η η η η η
ν ν

σ
ησ

FIGURE 3. The primary attaching maps in RP∞−1.

It is an understatement to say that these maps are not trivial to calculate. Doing so was one of the first great feats of
modern algebraic topology, as you can actually deduce Adams’s Hopf invariant one theorem from knowledge of the
primary attaching maps. Namely, the dimensions n in which Sn supports an H -space structure are exactly those n
for which the top cell of RPn

0 is disconnected. In turn, this means that the Hopf invariant 1 classes are exactly the
dashed lines extending from the (−1)-dimensional cell, named by Adams’s celebrated theorem: 2, η, ν , and σ .

Our next observation is that our four named submodules have a horizontal duality among them: RP4
2 and RP5

3,
for instance. There is another general statement explaining this:

Theorem (Atiyah). There is an equivalence DRPn−1
−k
'ΣRPk−1

−n .

Using this equivalence, plus the fact that the 0-cell splits off of RPn
0 'Σ

∞
+RPn , we can form the following system:

· · · S0 S0 S0 S0 · · ·

· · · RPn−2
0 RPn−1

0 RPn
0 RPn+1

0 · · · .

1This is proven by thinking about our excellent model for projective space: it is the projectivization of a vector space.
2This is proven by calculating the K -groups of RP∞: they’re all torsion and of predictable order, soL is of predictable order too.

2



An application of Atiyah’s duality theorem turns this diagram into the following:

· · · S−1 S−1 S−1 S−1 · · ·

· · · RP−1
−n+1 RP−1

−n RP−1
−n−1 RP−1

−n−2 · · ·

· · · RP∞−n+1 RP∞−n RP∞−n−1 RP∞−n−2 · · · ,

which is equivalent data to a map S−1→RP∞−∞ := limkRP∞−k .

Theorem (Lin). This map is a 2-adic equivalence.

Words cannot describe how bizarre this theorem is. It’s proven not conceptually, but by considering the Adams
spectral sequence for RP∞−∞: as you extend the pattern of H ∗RP∞ further and further down, the Adams E2-page
begins to look more and more like a shift of that of the sphere. The associated spectral sequence is even more
bizarre: it takes the ouroborean form

E1
s ,t =πs+tS

∧
2 ⇒πs+1S

∧
2 .

Any class α ∈ π∗S must be represented by some element (plus indeterminacy) on the E1-page, and that element is
called its root invariant R(α). Many interesting basic calculations of the root invariant are known, and it appears to
have “redshifting properties” in the language of chromatic homotopy theory. Understanding the cellular structure
of RP∞ would also have a lot to say about the behavior of this spectral sequence and hence of the root invariant.

As a final example of how important RP∞ is, consider the following: there is a map of fiber sequences

Ωn Sn Ωn+1Sn+1 Ωn+1S2n+1 Ωn−1Sn

QRPn−1 QRPn QSn QΣRPn−1.

E H P

This induces a map from the EHP spectral sequence (which itself ties the computation of stable homotopy groups
of spheres to their unstable homotopy groups) to the Atiyah–Hirzebruch spectral sequence

eH∗(RP∞;π∗S)⇒π∗Σ
∞RP∞.

This induces an interesting array of periodicities in the EHP spectral sequence, and knowledge of the cellular struc-
ture of RP∞ helps produce differentials in the EHP spectral sequence. It’s also worth remarking that this is a
truncation of the spectral sequence considered in Lin’s theorem.3

2. THE CELL STRUCTURE OF THOM SPECTRA

4Having hopefully convinced you that the cellular structure of RP∞ is highly interesting, I’d like to pose the
following question — which you should now agree is so interesting that it cannot have a good answer:

Question. Given all these interrelationships among the RPn
k
, can we recursively determine their cellular structures?

Here is one attempt at making this more precise:
(1) Since the 0-cell of RPn+1

0 splits off, we can easily form RPn+1
0 ' S0 ∨RPn+1

1 .
(2) Atiyah’s theorem says Thom(RPn ;L )∼=RPn+1

1 .
(3) This spectrum RPn+1

1 must be a suspension spectrum; the bundle L on RPn must extend to RPn+1; and
the truncations RPn+1

k
must satisfy James’s theorem.

3Almost all of these statements have analogues for BG where G is finite cyclic or finite symmetric (like G =Z/2=Σ2 gives RP∞). There is
also an interesting question of which results extend to describe a profinite version of CP∞ ' BS1.

4Much of the rest of this was told to me by Tyler Lawson, in http://mathoverflow.net/a/138228/1094. It is my fault if I’ve garbled it.
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The second point is the most interesting among them.

Question. More generally: given a virtual vector bundle V over a CW complex X , what information is needed to
determine the cellular structure of the spectrum Thom(X ;V )?

In supreme generality, a Thom space is constructed as follows: let G be a group with a map G→Aut Sn , and let
P be a principal G-bundle on a space X , classified by a map α : X → BG. The Thom space of this bundle is defined
by the fiberwise smash: Thom(X ;α) := P+ ∧G Sn . We produce a cellular structure on the Thom space as follows:
let X (∗) be a cellular filtration of X . Each n-cell Dn →X can be lifted to a map Dn → P , and because P is principal
this extends to a G-cell G×Dn → P . Altogether, this gives P the structure of a G-cell complex. Because smashing
(over G) commutes with colimits, this induces a cell structure on the Thom space, where the cells match those of
X , but whose attaching maps have been twisted by the structure of P and the action of G.

Because passing to suspension spectra also commutes with colimits, this discussion also produces stable cell
structures.5 Stably, however, we can make the interesting comparison we are seeking: let S[G] = Σ∞+G be the stable
group-algebra on G, so that S[G] acts on Y =Σ∞+ P . Then, let S denote the stable sphere with trivial S[G]-action,
S0 =Σ−nΣ∞Sn the stable sphere with natural S[G]-action. There are the following two equalities:

Thom(X ;α) = Y ∧S[G] S0, Σ∞+X = Y ∧S[G] S.

The filtrations on Y itself and these two spectra give rise to the following three spectral sequences:

(1) Taking homotopy groups of the cellular filtration of Y gives a chain complex Cd =π∗(Σ
−d Y /Y d−1) of free

modules over π∗S[G], and so a spectral sequence H∗C∗⇒π∗Y .
(2) Tensoring the filtration with S over S[G] tensors the complex C with π∗S over π∗S[G] (which acts triv-

ially). This chain complex becomes the cellular complex for Σ∞+X , and its homology becomes the Atiyah–
Hirzebruch spectral sequence for its stable homotopy:

¨

E1 =C∗(X ;π∗S),
E2 =H∗(X ;π∗S)

«

⇒π∗Σ
∞
+X .

(3) Tensoring the filtration with S0 over S[G] tensors the complex C with π∗S over π∗S[G] (which acts
nontrivially). This chain complex becomes the cellular complex for Thom(X ;α), and its homology becomes
the Atiyah–Hirzebruch spectral sequence for its stable homotopy:

¨

E1 =C∗(X ;π∗S)
E2 =H∗(Thom(X ;α);π∗S)

«

⇒π∗Thom(X ;α).

Our goal is to understand how the differentials in the second spectral sequence can be modified to give those in the
third. For a simple example of such a theorem, orientability can be so interpreted: an HZ-orientation of α gives an
identification H∗(X ;π∗S)∼=H∗(Thom(X ;α);π∗S), i.e., it shows that their d 1-differentials agree.

3. EXAMPLES

3.1. G =Aut Sn , X = Sk . In this case, we can give a complete description of the possible Thom spectra. Giving X
the (unbased) cell structure of one 0-cell and one k-cell, the principal bundle P is then formed by attaching G×Dk to
G along a G-equivariant map G× Sk−1→G, i.e., a class α ∈πk−1 Aut Sn . In the case k > 1,6 the space Thom(X ;α)
is given as the cofiber

Sn+k−1 α−→ Sn→Thom(X ;α).

5Slightly more than this can be said: the set of “allowable twists” of the attaching maps in the twisted cell structures are a torsor for the
J -groups of X . This carries some useful intuition: for instance, whatever twists are performed should also be able to be un-performed.

6In the case k = 1, some care has to be taken, since then we’re using the disconnected space S0 = {+,−}. You end up multiplying by the
difference 1−α, corresponding to the values of the points + and −.
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3.2. G =O(1) and G = U (1). In these cases, G is both a sphere and an H -space, with Hopf maps h = 2 and h = η
respectively. The homotopy-theoretic group algebra can then be calculated to be π∗(S[G]) =π∗[d]/(d 2− hd ). On
homotopy groups, the two tensor products S∧S[G]− and S0 ∧S[G]− act by sending d to either 0 or h, respectively.

It’s simple to determine the lowest order differentials in the spectral sequences for BG, which in the case of
G = O(1) gives RP∞. The G-complex fibering over the space X = BG is Y = Σ∞+ EG, and the corresponding
complex C is an acyclic resolution of S by free G-modules. In fact, a model for C exists with one cell in every
dimension divisible by (1+ dimG) and whose differentials are given by alternating multiplication by d and by
d − h. We deduce that the lowest order differentials on the suspension spectrum induce alternating multiplication
by 0 and by −h, and on the Thom spectrum by h and by 0.

3.3. Higher order complexes. The formula we’ve indicated for describing d1 in the case of these G is the single
easy step; all the higher differentials are vastly more complex, as we have to study equivariant cells which have been
lifted across multiple filtration layers. For instance, here is the Atiyah–Hirzebruch spectral sequence for RP4

1:

� • • 3 •

� • • 3 •

� • • 3 •

� • • 3 •

2

2

2

2
η η

e0

e1

e2

e3

η η2 η3/4

FIGURE 4. Spectral sequences for Σ−1RP3
1, Thom(RP3; 0)' (RP3

1)+, and Thom(RP3,L − 1)'Σ−1RP4
1.

The two main features of this picture that we’ve explained so far are the the Atiyah–Hirzebruch spectral sequence
for RP3

1 includes into the bottom three rows, and that the d1-differential on the top row is determined by some Tor
formula.

However, where this differential d2(ηe3) = η
2e1 comes from (in terms of this story) is something of a mystery.7

In other contexts, similar questions are addressed by thinking about Massey products (e.g., η2 = 〈2,η, 2〉 seems
potentially relevant), but it’s unclear how to adapt that to this situation.8,9

7It is worth pointing out that this differential is part of the cell structure of RP4
1 but is not a primary attaching map. The primary attaching

maps corresponding precisely to the action of the differentials on the classes ei themselves, i.e., the first nonzero differential off of a given row.
8Perhaps this differential can also be thought of as 2e2 = 〈η, 2, e0〉.
9Also worth mentioning: the existence of these recurrences tell us something about the infinite loopspace structure of bgl1S. For instance,

for η ∈π2 bgl1S, there the existence of CP2 forces relation η ·η= 0.
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