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Formal groups

In this talk, p is an odd prime and k is a finite field, char k = p.

Definition

A formal group law is a power series x +F y ∈ RJx , yK satisfying

x +F 0 = x , x +F y = y +F x , x +F (y +F z) = (x +F y) +F z .

Idea

Complex geometry: these come from charts on Lie groups.
Arithmetic geometry: take a more exotic R than C, like Fp.

Example: Gm

The formal multiplicative group Gm is presented by

x +Gm y = 1− (1− x)(1− y) = x + y − xy .
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Some local class field theory

Most number theoretic questions can be interpreted through K̄
and Gal(K̄/K ) for K some (local) number field.

Theorem (Lubin–Tate)

For a local number field K , there is a maximal abelian extension:

Gal(K ab/K ) = Gal(K̄/K )ab.

One can construct it explicitly by studying the torsion points of a
certain formal group ΓK over OK .

Example: K = Qp

ΓQp is given by Gm. “Torsion points” of Gm are unipotent
elements, and in fact Qab

p = Qp(ζn : n > 0).
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Fields in stable homotopy theory

A field spectrum is a ring spectrum with Künneth isomorphisms.
E.g.:

HdR = HR,
HFp,

}
ordinary

KU/p,
...?

}
extraordinary

Theorem (Devinatz–Hopkins–Smith)

There is a bijection

{
formal groups

over k

}
K−→


2-periodic

field spectra
with π0 = k

 .

The spectrum K (Γ) is called the Morava K-theory for Γ.

Example: Γ = Gm

KU/p is a model for K (Gm).
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Homology operations and Morava E -theories

Our three examples come with natural “deformations”:

HR→ HR, HZp → HFp, KU∧p → KU/p.

All of these are governed by Bockstein operations.

Theorem (Morava et al.)

For d = ht(Γ) finite, K (Γ) has d Bocksteins, giving a spectrum

E (Γ)→ K (Γ)

called the Morava E-theory for Γ. It takes values in modules over
Def(Γ) = W(k)Ju1, . . . , ud−1K with an Aut Γ action.

Example: Γ = Gm

KU∧p → KU/p is a model for E (Gm)→ K (Gm).
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Homotopy groups via L-functions

E (Γ) is valued in modules over Def(Γ) = W(k)Ju1, . . . , ud−1K with
an Aut Γ action.

Theorem (Harris–Taylor et al., “local Langlands correspondence”)

There is a correspondence among certain representations of:

Aut Γ, GLd(K ), WK ⊂ Gal(K̄/K ).

Theorem (Salch(–Morava), special case of Γ = Gm)

For nice enough finite cell complexes X , there is an L-function

L(E (Gm)∗(X ); s).

It is analytic to the right of a pole at s = dimX , and its special
values at s > dimX have denominators encoding the ranks of the
E (Gm)-local homotopy groups of X away from 2.
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Homotopy groups via L-functions

Example: LE(Gm)S
0 (Adams–Hopkins–Ravenel)

The L-function associated to S0 is the Riemann ζ-function.

n 1 2 3 4 5 6 7

|π2n+1LE(Gm)S
0| 2331 1 243151 21 233271 1 253151

denom(ζ(−n)) 2231 1 233151 1 223271 1 243151

Idea

This set-up encourages us to work one prime at a time and invoke
Euler factorizations and p-adic L-functions.

What might n ∈ Zp mean on the homotopy groups side?
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Lines in the K (Γ)-local category

What’s a sphere, anyway?

The ∧-invertible spectra are exactly the stable spheres.

SpectraK(Γ)

ModDef(Γ),Aut ΓSpectra

E (Γ)∗

LK(Γ)

E (Γ)∗
conservative

Question

What are the ∧-invertible objects in SpectraK(Γ)?
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Lines in the K (Γ)-local category

Theorems (Hopkins–Mahowald–Sadofsky; Hopkins–Strickland)

For Γ = Gm and p ≥ 3, Pic = Z×p o Z/2 (even spheres o S1).
The homotopy groups of LK(Gm)S

−1 indexed on the Z×p -factor in
Pic agree with the p-adic interpolation of the ζ-function.

Theorems (Goerss, Hopkins, Mahowald, Rezk, Sadofsky)

Γ = Gm, p = 2: Z/2× (Z×2 o Z/2).

Γ = Css , p ≥ 5: (Zp × Zp × Z/(p2 − 1)) o Z/2.

Γ = Css , p = 3: Z/3×Z/3× ((Z3×Z3×Z/(32− 1))oZ/2).

All other values unknown. How can we compute them? What can
these say about Salch’s L-functions?
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Bonus slide: Lines in the K (Γ)-local category

Theorem (Hopkins–Mahowald–Sadofsky)

A spectrum X is K (Γ)-locally invertible if and only if K (Γ)∗X is a
K (Γ)∗-line (i.e., dimK (Γ)∗X = 1).

Theorem (P.)

If X is a space with K (Γ)∗X a power series ring, there is a map

T+LK(Γ)Σ∞X → LK(Γ)Σ∞X

selecting its algebro-geometric tangent space on cohomology.

E.g.:

T+CP∞ ' CP1 ' S2.

T+K (Qp/Zp, d) ' S0[det] for p � d .
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