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Abstract

This paper presents the first examples of K3 surface automorphisms
f : X → X with Siegel disks (domains on which f acts by an irrational
rotation). The set of such examples is countable, and the surface X
must be non-projective to carry a Siegel disk.

These automorphisms are synthesized from Salem numbers of de-
gree 22 and trace −1, which play the role of the leading eigenvalue for
f∗|H2(X). The construction uses the Torelli theorem, the Atiyah-Bott
fixed-point theorem and results from transcendence theory.
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1 Introduction

The first dynamically interesting automorphisms of compact complex man-
ifolds arise on K3 surfaces.

Indeed, automorphisms of curves are linear (genus 0 or 1) or of finite
order (genus 2 or more). Similarly, automorphisms of most surfaces (includ-
ing P2, surfaces of general type and ruled surfaces) are either linear, finite
order or skew-products over automorphisms of curves. Only K3 surfaces,
Enriques surfaces, complex tori and certain non-minimal rational surfaces
admit automorphisms of positive topological entropy [Ca2]. The automor-
phisms of tori are linear, and the Enriques examples are double-covered by
K3 examples.

Figure 1. A K3 surface in P1 × P1 × P1.

Over R. To give an idea of the richness of dynamics on K3 surfaces, consider
a smooth hypersurface

X ⊂ P1 × P1 × P1

of degree (2, 2, 2), defined by the affine equation

(1 + x2)(1 + y2)(1 + z2) + Axyz = 2, A ∈ R. (1.1)

By the adjunction formula, the canonical bundle of X is trivial, and by the
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Figure 2. Dynamics on real K3 surfaces.
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Lefschetz hyperplane theorem b1(X) = 0, so X is a K3 surface. Its real
points X(R) for A = 8 are shown in Figure 1.

A line through p ∈ X parallel to the x-axis passes through a unique
second point ιx(p) ∈ X, and similarly for y and z. For our dynamical
system on X, we take the composition of these 3 involutions,

f = ιx ◦ ιy ◦ ιz.

The automorphism f |X(R) is area-preserving; indeed, any K3 surface car-
ries a nowhere-zero holomorphic (2, 0)-form η, which in turn determines an
invariant measure |η| on X(R).

Orbits of f : X(R) → X(R), as viewed from above, are shown in Figure
2 for A = 2, 2.5 and 8. When A = 2 (top) the dynamics is dominated by
the elliptic islands predicted by KAM theory; there are many invariant disks
and no dense orbits. For A = 8 the dynamics on X(R) seems to be ergodic.
The intermediate parameter A = 2.5 exhibits a mixture of behaviors: elliptic
islands seem to coexist with an ergodic component of positive measure.

The dynamics in these real examples is typical for area-preserving maps
on surfaces. Aside from the existence of elliptic islands, little is rigorously
known about the ergodic theory of such mappings; cf. [Mak1], [Mak2].

Over C. In this paper we will be concerned with the dynamics of automor-
phisms of complex K3 surfaces, f : X → X.

Every automorphism preserves the measure η ∧ η on X determined by a
nowhere zero holomorphic (2, 0)-form η. Using Kummer surfaces, it is easy
to construct ergodic K3 surface automorphisms from complex tori (§4). It
is natural to ask if all automorphisms of positive topological entropy are
ergodic, or at least have a dense orbit.

Siegel disks. Let us say a linear map F (z1, z2) = (λ1z1, λ2z2) is an irra-
tional rotation if |λ1| = |λ2| = 1 and F has dense orbits on S1 × S1. A
domain U ⊂ X is a Siegel disk for f if f(U) = U and f |U is analytically
conjugate to F |∆2 for some irrational rotation F . (Here ∆ = {z : |z| < 1}.)

Like an elliptic island on X(R), a Siegel disk on X is an obstruction
to ergodicity and to the existence of dense orbits. The main result of this
paper, achieved in §10, is:

Theorem 1.1 There exist K3 surface automorphisms with Siegel disks.

Every such automorphism has positive topological entropy.
Unfortunately, these Siegel disks are invisible to us: they live on non-

projective K3 surfaces, and we can only detect them implicitly, through
Hodge theory and dynamics on the cohomology. Indeed, in §7 we show:
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Theorem 1.2 There are at most countably many K3 surface automorphisms
with Siegel disks, up to isomorphism; and there are no Siegel disks on pro-
jective K3 surfaces.

Application: Kähler-Einstein metrics. Recall that any class in the
Kähler cone CX ⊂ H1,1(X)R of a K3 surface is represented by the symplec-
tic form ω of a unique Kähler-Einstein metric. It would be interesting to
understand the behavior of these metrics as [ω] tends to ∂CX . In §11 we
use dynamics to show that [ω] can collapse on an open set.

Theorem 1.3 Let f : X → X be a K3 surface automorphism with a Siegel
disk U . Then there exists a sequence of Kähler-Einstein symplectic forms
such that

[ωn] → ξ ∈ ∂CX , ξ 6= 0,

while ωn|U → 0 uniformly on compact sets.

Action on cohomology. We now turn to a more detailed account of the
dynamics of automorphisms.

For any K3 surface, the space H2(X, Z) is an even, unimodular lattice
of signature (3, 19) with respect to the intersection form. By the Torelli
theorem for K3 surfaces, Aut(X) acts faithfully on H2(X). Our approach
to dynamics on X is via the action on H2(X).

Two useful invariants, discussed in §3, are:

λ(f) — the spectral radius of f∗|H2(X); and
δ(f) — the eigenvalue of f∗ on the line H2,0(X) = C · η.

The topological entropy of f is given by h(f) = log λ(f) ≥ 0. When f
has positive entropy, λ(f) > 1 is the unique eigenvalue of f∗|H2(X) outside
the unit circle. Thus λ(f) is a Salem number: an algebraic unit whose
conjugates other than λ(f)±1 lie on the unit circle.

The map f preserves
∫
X

η∧ η, and so |δ(f)| = 1. We refer to δ(f) as the
determinant of f , since

detDfp = δ(f)

at any fixed-point p of X. When X is projective, δ(f) is a root of unity, and
thus p cannot be the center of a Siegel disk. This is why we must look to
non-projective surfaces for Siegel disk examples.1

Construction of automorphisms. Here is a sketch of the construction
of automorphisms with Siegel disks.

1‘Resonant’ rotation domains, where detDfp is a root of unity, seem unlikely to exist
(§7), but we do not know how to rule them out.
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1. Let λ > 1 be a degree 22 Salem number with minimal polynomial
S(x) ∈ Z[x]. Our first goal is to construct a K3 surface automorphism
f : X → X such that λ(f) = λ and S(x) is the characteristic polyno-
mial of f∗|H2(X).

2. Let B = Z[y]/(S(y)), and let K be the field of fractions of B. Let
U(x) be a unit in the subring of B generated by x = y + y−1. We
make B into a lattice by defining the inner product

〈g1, g2〉B(U) = TrK
Q

(
U(x)g1(y)g2(y

−1)

R′(x)

)
,

where R(x) is the minimal polynomial of λ+λ−1. Assuming |S(±1)| =
1 (that is, λ is unramified) and U is suitably chosen, the above inner
product makes B(U) into an even, unimodular lattice of signature
(3,19). See §8.

3. Let F : B → B be multiplication by y. Then F is an isometry of the
lattice B(U). There is a unique eigenspace E ⊂ B(U)⊗C of F + F−1

with signature (2, 0). Writing

E = H2,0 ⊕ H0,2

as a sum of eigenspaces of F with eigenvalues δ and δ−1 respectively,
we obtain a Hodge structure on B(U) invariant under F .

4. By surjectivity of the period mapping, there is a K3 surface X and an
isomorphism of lattices B(U) ∼= H2(X, Z) respecting the Hodge struc-
ture. The subspace H1,1(X) is sufficiently irrational that Pic(X) = 0;
in particular, X is nonprojective.

5. By the Torelli theorem, there is an automorphism f : X → X making
the diagram

B(U)
F−−−−→ B(U)

y
y

H2(X)
f∗

−−−−→ H2(X)

commutative (§9). Thus λ(f) = λ and δ(f) = δ. The fixed-points of
f are isolated because the only subvarieties of X are points.
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6. Now suppose the trace of λ is −1. Then f has a unique fixed-point
p ∈ X, since its Lefschetz number is given by

L(f) = Tr f∗|(H0 ⊕ H2 ⊕ H4) = 1 − 1 + 1 = 1.

The Atiyah-Bott formula relates Tr Dfp to Tr f∗|H2,0(X) = δ, and we
already know that detDfp = δ. Thus the eigenvalues α, β of Dfp are
determined by δ. See §6.

7. For suitable values of δ, Dfp is an irrational rotation. That is, its
eigenvalues α, β lie on S1 and are multiplicatively independent, mean-
ing

αi = βj ⇐⇒ (i, j) = (0, 0).

The eigenvalues lie on S1 if τ = δ + δ−1 > 1 − 2
√

2, and they are
multiplicatively independent if τ has a conjugate τ ′ < 1 − 2

√
2. See

§7.

8. Assume now that the algebraic numbers α and β are multiplicatively
independent. Then they are jointly Diophantine, by a result of Fel’dman.
That is, there exist C,M > 0 such that

|αiβj − 1| > C(|i| + |j|)−M

for all (i, j) 6= (0, 0). The proof uses transcendence theory and the
Gel’fond-Baker method.

9. By a result of Siegel and Sternberg, once the eigenvalues of Dfp are
jointly Diophantine, f is locally linearizable. We conclude that f has
a Siegel disk centered at p. See §5.

10. To complete the construction, we must exhibit unramified degree 22
Salem polynomials S(x) of trace −1, and units U(x), such that the root
δ of S(x) satisfies the bounds required in step 7. We note that Salem
numbers with trace −1 are rather rare; there are only finitely many
such numbers of degree 22, and there are no known Salem numbers of
trace < −1.

The desired polynomials, located by an intensive computer search, are
presented in §10.

Questions. In conclusion we remark that many basic questions concerning
dynamics on projective K3 surfaces remain open. For example, let f : X →
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X be an automorphism of a projective K3 surface with positive entropy.
Can f have a rotation domain? Does f have a dense orbit? Is f ergodic?

Notes and references. For more about dynamics on complex surfaces,
see the work of Cantat [Ca2], [Ca1]. Dynamical systems on certain cubic
surfaces are considered by Fried in [Fr]; see also [Br].

For an arithmetic perspective on K3 surface dynamics, see work of Sil-
verman, Mazur and Wang: [Sil], [Maz], [Wa]. Silverman studies the intersec-
tion of (1, 1) and (2, 2) hypersurfaces in P2×P2, while Wang studies (2, 2, 2)
surfaces in P1 × P1 × P1 as we do above.

Acknowledgements. I would like to thank B. Mazur and B. Gross for
many stimulating discussions. Mazur introduced me to dynamics on K3
surfaces in 1992, including the examples of (2, 2, 2) hypersurfaces presented
above; this paper grew out of our dialog. Gross helped engineer the number-
theoretic construction of unimodular lattices; these matters are developed
in more detail in [GM]. I would also like to thank D. Allcock, W. Stein and
the referees.

2 K3 surfaces

This section provides a resumé of basic facts about K3 surfaces and maps
between them; for details see [BPV], [Bv2]. We start with some terminology
concerning lattices, to streamline the discussion of the intersection form.

Lattices. A lattice is a finitely-generated free abelian group L ∼= Zn

equipped with a non-degenerate symmetric bilinear form (or inner prod-
uct) 〈x, y〉L ∈ Z. The lattice L is even if 〈x, x〉L ∈ 2Z for all x ∈ L;
otherwise L is odd. If the inner product gives an isomorphism between L
and L∗ = Hom(L, Z), then L is unimodular. We say L has signature (p, q)
if the quadratic form 〈x, x〉L on L ⊗ R ∼= Rn is equivalent to

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q.

If (p, q) = (n, 0) or (0, n), then L is definite; otherwise L is an indefinite
lattice.

Any two even, indefinite, unimodular lattices with the same signature
are isomorphic. There exists an even unimodular lattice with signature (p, q)
iff p ≡ q mod8. See [Ser1, §5], [MH].

K3 surfaces. A complex surface X is a connected compact complex man-
ifold with dimC X = 2. If X is simply-connected and the canonical bundle
of X is trivial, then X is a K3 surface. All K3 surfaces are diffeomorphic.
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Intersection form. Let X be a K3 surface, and let

(C,D) 7→ C · D ∈ Z

denote the intersection form on the middle-dimensional cohomology group
H2(X, Z). This form makes H2(X, Z) into an even unimodular lattice of
signature (3, 19). As remarked above, all such lattices are isomorphic. Thus
in an appropriate basis, the intersection form is given by C · D = CQDt

where Q = 3H ⊕ 2(−E8), H = ( 0 1
1 0 ) and

E8 =




2 0 0 −1 0 0 0 0
0 2 −1 0 0 0 0 0
0 −1 2 −1 0 0 0 0
−1 0 −1 2 −1 0 0 0
0 0 0 −1 2 −1 0 0
0 0 0 0 −1 2 −1 0
0 0 0 0 0 −1 2 −1
0 0 0 0 0 0 −1 2




defines the positive-definite even unimodular form of rank 8. For brevity we
write C2 = C · C.

Since X is simply-connected, its other integral cohomology groups are
given by H0(X, Z) = H4(X, Z) = Z and H1(X, Z) = H3(X, Z) = 0.

Signatures. The intersection form determines a Hermitian inner product
on H2(X, C) = H2(X, Z) ⊗ C. We say a subspace S ⊂ H2(X, C) has sig-
nature (p, q) if S = S and the intersection pairing on S is non-degenerate,
with signature (p, q). In this case we have H2(X, C) = S ⊕ S⊥, and S⊥ has
signature (3 − p, 19 − q).

Hodge structure. The complex structure of X is reflected in the Hodge
decomposition

H2(X, C) = H2,0(X) ⊕ H1,1(X) ⊕ H0,2(X).

Here H1,1 = H1,1 and H2,0 = H0,2. Since the canonical bundle of X is
trivial, we have

H2,0(X) = C · η
where η is a nowhere vanishing holomorphic (2, 0)-form, locally given by
η = η(z1, z2) dz1 ∧ dz2. Noting that

η · η =

∫

X

η ∧ η = 4

∫

X

|η|2 > 0,

we find the orthogonal subspaces H1,1 and H2,0⊕H0,2 have signatures (1, 19)
and (2, 0) respectively.
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Projective surfaces. The Picard group of X is given by

Pic(X) = H1,1(X) ∩ H2(X, Z);

it classifies holomorphic line bundles on X. A K3 surface is projective iff
there is a line bundle L ∈ Pic(X) with L2 > 0 [BPV, IV.5].

The Kähler cone. Every K3 surface is Kähler. The Kähler cone

CX ⊂ H1,1(X)R

is the set of all classes represented by the symplectic forms of Kähler metrics
on X. (Here VR = {v ∈ V : v = v}.)

The shape of the Kähler cone can be made more explicit as follows. Let

∆(X) = {D ∈ Pic(X) : D2 = −2}, and

W (X) = {ω ∈ H1,1(X)R : ω2 > 0 and ω · D 6= 0 for all D ∈ ∆(X)}.

Since the intersection form on H1,1(X)R has signature (1, 19), W (X) is the
cone over two copies of the hyperbolic space H19, with a configuration of
hyperplanes corresponding to ∆(X) deleted.

It is known that the Kähler cone CX coincides with a component or
chamber of W (X). The automorphisms of H2(X, Z) preserving the inter-
section form and Hodge structure act transitively on the set of chambers.
(Observe that such automorphisms include the reflections C 7→ C+(C ·D)D
through the hyperplanes defined by D ∈ ∆(X).)

Torelli theorem. The Torelli theorem asserts that a K3 surface is deter-
mined up to isomorphism by its Hodge structure. More precisely we have:

Theorem 2.1 Let X and Y be K3 surfaces, and let

F : H2(X, Z) → H2(Y, Z)

be an isomorphism preserving the intersection pairing. Extend F to H2(X, C)
by tensoring with C; then:

1. If F sends H2,0(X) to H2,0(Y ), then X and Y are isomorphic.

2. If F also sends CX to CY , then F = f∗ for a unique isomorphism
f : Y → X.
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Marked K3 surfaces. Next we discuss the space of all possible Hodge
structures on a K3 surface.

Let L be a fixed even, unimodular lattice of signature (3, 19). A Hodge
structure on L is a splitting

L ⊗ C = H2,0 ⊕ H1,1 ⊕ H0,2

such that dim H2,0 = 1, H2,0 = H0,2, H2,0 ⊕ H0,2 has signature (2, 0) and
H1,1 = (H2,0⊕H0,2)⊥. The space of Hodge structures on L is parameterized
by the period domain

Ω(L) = {[η] ∈ P(L ⊗ C) : η · η = 0 and η · η > 0},

via the correspondence

H2,0 ⊕ H1,1 ⊕ H0,2 = C · η ⊕ {η, η}⊥ ⊕ C · η.

The period domain is an open subset of a smooth, 20-dimensional quadric
hypersurface in P21.

Now let X be a K3 surface. A marking for X is an isomorphism

ι : H2(X, Z) ∼= L

preserving the intersection pairing. Every K3 surface admits a marking.
Two marked surfaces (X1, ι1), (X2, ι2) are equivalent if there is an isomor-
phism f : X1 → X2 such that ι2 = ι1 ◦ f∗.

Let M(L) be the moduli space of equivalence classes of K3 surfaces
marked by L. The period mapping

π : M(L) → Ω(L) ⊂ P(L ⊗ C)

is defined by π(X, ι) = [ι(η)], where η 6= 0 is a holomorphic (2,0)-form on
X. The image of π lies in the period domain because η∧η = 0 and η ·η > 0.

The next result complements the Torelli theorem by showing all possible
Hodge structures on K3 surfaces actually arise:

Theorem 2.2 The period mapping π : M(L) → Ω(L) is surjective.

Note: the period mapping is not injective, because the marked Hodge
structure on H2(X) does not uniquely determine the Kähler cone CX .
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3 Automorphisms of K3 surfaces

Given a K3 surface X, let Aut(X) denote the group of biholomorphic maps
f : X → X.

By the Torelli theorem, the map f 7→ f∗|H2(X) gives an isomorphism

Aut(X) ∼= Aut(H2(X, Z),H2,0(X), CX ).

That is, Aut(X) acts faithfully on H2(X, Z), preserving the intersection
form, the Hodge decomposition and the Kähler cone CX ; and conversely,
any automorphism of H2(X, Z) preserving these three structures is induced
by an automorphism of X.

In this section we study the eigenvalues of f∗|H2(X), and the synthesis
of automorphisms with a given action on H2(X).

Algebraic numbers. A complex number λ is algebraic if P (λ) = 0 for
some irreducible, monic polynomial P (t) ∈ Q[t]. The degree of λ is the
degree of P (t), and the roots of P (t) in C are the conjugates of λ. If we have
P (t) ∈ Z[t] then λ is an algebraic integer; and if λ−1 is also an algebraic
integer, then λ is a unit. If λ is a root of unity, then P (t) is a cyclotomic
polynomial. An algebraic integer is a root of unity iff all its conjugates lie
on the unit circle S1 ⊂ C.

Salem numbers. A Salem number is a unit λ > 1 whose conjugates other
than λ±1 lie on the unit circle. The irreducible polynomial S(t) of λ is a
Salem polynomial; it has even degree, with roots of the form

{λ, λ−1, α1, α1, . . . , αd, αd},
where |αi| = 1. (For our purposes it is natural to permit quadratic Salem
numbers; these were excluded in Salem’s original definition [Sa, III.3].)

A Salem trace is an algebraic integer τ > 2 whose other conjugates lie in
[−2, 2]; its irreducible polynomial is a Salem trace polynomial. Salem traces
and Salem numbers correspond bijectively, via the relation τ = λ + λ−1.

Orthogonal groups. Let O(p, q) ⊂ GLn(R) denote the orthogonal group
of the real quadratic form

x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

p+q

of signature (p, q). Given T ∈ O(p, q) we obtain a T -invariant splitting

Cp+q = ⊕E(λ),

where E(λ) =
⋃

Ker(λI − T )n is the generalized λ-eigenspace of T . The
intersection pairing is trivial between E(λ) and E(µ) unless λµ = 1; thus
the set of eigenvalues of T is invariant under λ 7→ λ−1.
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Lemma 3.1 A transformation T ∈ O(p, q) has at most min(p, q) eigenval-
ues outside the unit circle, counted with their multiplicities.

Proof. The subspace S = ⊕|λ|>1E(λ) is isotropic and defined over R, so
dim S ≤ min(p, q). But dim S is at least as large as the number of eigenvalues
outside S1.

Automorphisms. Now let f : X → X be an automorphism of a K3
surface, let f∗ = f∗|H2(X, Z), and let

λ(f) = sup{|λ| : det(λI − f∗) = 0}

be the spectral radius of f∗. It is known that the topological entropy of f
is given by h(f) = log λ(f); thus f has positive entropy iff λ(f) > 1 [Ca1,
Theorem 2.1.5] (see also [Gr], [Ym], [Frl]).

Since f∗ is invertible and preserves the integral structure on H2, its
eigenvalues are algebraic integers, in fact units.

Theorem 3.2 Either all eigenvalues of f∗|H2(X) are roots of unity, or
there is a unique, simple eigenvalue λ with |λ| > 1, and λ is a Salem number.

Proof. Since the conjugates of eigenvalues are again eigenvalues, if they all
lie on S1 then they are all roots of unity.

Now suppose f∗ has an eigenvalue with |λ| > 1. Since f∗ stabilizes
the subspace H1,1(X) ⊂ H2(X) of signature (1, 19), it is conjugate to a
transformation T ∈ O(2, 0) × O(1, 19). By Lemma 3.1, f∗ has at most one
eigenvalue outside the unit circle, so λ is unique, and therefore real.

As remarked above, λ is a unit. Since f∗ preserves the Kähler cone,
its O(1, 19) part does not interchange the sheets of the light-cone in H1,1

R ,
and therefore λ > 1. Applying the same reasoning to f−1, we find that
λ−1 > 0 is the unique eigenvalue of f∗ inside the unit circle. Since all other
eigenvalues of f∗ lie on the unit circle, λ is a Salem number.

Corollary 3.3 The irreducible factors of the characteristic polynomial of
f∗|H2(X) include at most one Salem polynomial; and the remaining factors
are cyclotomic.

Synthesis of automorphisms. The next theorem provides the key to
building examples of K3 surface automorphisms. It reduces the construction
of automorphisms to a problem in integral quadratic forms. It also represents
the first step towards determining which Salem numbers can arise as λ(f).
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Theorem 3.4 (Synthesis) Let F : L → L be an automorphism of an
even, unimodular lattice of signature (3, 19). Suppose S(t) = det(tI − F ) is
a Salem polynomial. Then there is:

• A K3 surface automorphism f : X → X, and

• A marking ι : H2(X, Z) → L, such that F = ι ◦ f∗ ◦ ι−1.

Proof. Since F has only two eigenvalues off the unit circle, while the
signature of L is (3, 19), there exists an eigenvector η ∈ L ⊗ C such that
T (η) = δη, |δ| = 1 and η · η > 0. By surjectivity of the period mapping
(Theorem 2.2), there exists a K3 surface X and a marking ι : H2(X, Z) → L
such that ι(H2,0(X)) = C · η.

Let T : H2(X, Z) → H2(X, Z) be the automorphism given by T =
ι−1 ◦F ◦ ι. Then T respects the intersection paring and the Hodge structure
on H2(X), and its characteristic polynomial is also S(t).

We claim that Pic(X) = 0. Indeed, since S(t) is irreducible, T has no
proper rational invariant subspace, and thus H1,1(X) ∩ H2(X, Z) = (0). In
particular, ∆(X) = ∅, so the Kähler cone CX ⊂ H1,1(X)R is simply one of
the two components of the space W (X) = {ω : ω2 > 0}.

Since the leading eigenvalue of T is a Salem number λ > 1, T does not
interchange the components of W (X), and therefore T (CX) = CX . By the
Torelli theorem (Theorem 2.1), there is a unique automorphism f : X → X
such that f∗|H2(X, Z) = T .

Remarks. The marked K3 surface X constructed above is unique up to
complex conjugation. Note that X is non-projective, since Pic(X) = (0).

The determinant δ(f). Let η 6= 0 be a holomorphic (2, 0)-form on X.
Since dimH2,0(X) = 1, η is always an eigenvector for f∗. Let

δ(f) = Tr f∗|H2,0(X) = f∗η/η

denote the corresponding eigenvalue. The norm η · η > 0 is preserved by f ,
so we have |δ(f)| = 1.

Now suppose p ∈ X is a fixed-point of f , and let Dfp : TpX → TpX
denote the complex derivative. Since η(p) lies in ∧2T ∗

p (X), we have

δ(f) = det Dfp.

In particular, detDfp is the same at all fixed-points. For this reason, we
call δ(f) the determinant of f .

We conclude this section with two results about the eigenvalue δ(f).
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Theorem 3.5 If f is an automorphism of a projective K3 surface X, then
δ(f) is a root of unity.

Proof. Since X is projective, there is a D ∈ Pic(X) ⊂ S with D2 >
0. The subspace H1,1(X) ∩ D⊥ is negative-definite, with signature (0, 19),
and contains Pic(X) ∩ D⊥. Thus the intersection form on Pic(X) ⊗ R has
signature (1, n) for some n, 0 ≤ n ≤ 19.

Consequently, the rational f∗-invariant subspace

S = Pic(X)⊥ ⊃ H2,0(X) ⊕ H0,2(X)

has signature (2, 19 − n). Now f∗|S preserves the signature (2,0)-subspace
on the right, so it is conjugate to an element of O(2) × O(19 − n). Thus
all eigenvalues of f∗|S, including δ(f), lie on the unit circle. But f∗|S also
preserves the lattice S ∩ H2(X, Z), so its characteristic polynomial lies in
Z[t], and therefore its eigenvalues are roots of unity.

Theorem 3.6 Up to isomorphism, there are only countably many pairs
(X, f) where δ(f) is not a root of unity.

Proof. Assume δ = δ(f) is not a root of unity. By Corollary 3.3, δ has
multiplicity one as a root of the characteristic polynomial for f∗|H2(X, Z).
Thus H2,0(X) is an eigenspace for f∗, and therefore f∗ determines the Hodge
structure on H2(X) up to finitely many choices. By the Torelli theorem,
the Hodge structure on H2(X) together with f∗|H2(X) determines (X, f)
up to isomorphism. Since there are only countably many possibilities for
f∗|H2(X, Z), there are only countably many possibilities for (X, f).

In §4 we will construct countably many examples where δ(f) is not a
root of unity. The invariant δ(f) is studied on more general manifolds in
[Bv1], which includes a version of Theorem 3.5.

4 Ergodic dynamics on Kummer surfaces

Every K3 surface X carries a natural probability measure µ, defined by

µ(A) =

∫

A

η ∧ η,

where η is a holomorphic (2,0)-form on X, scaled so µ(X) = 1. All auto-
morphisms of X preserve the measure µ.
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An automorphism f : X → X is ergodic if every f -invariant Borel set
satisfies µ(A) = 0 or 1. It is mixing if any pair of Borel sets satisfy

µ(fn(A) ∩ B) → µ(A)µ(B)

as |n| → ∞. Mixing implies ergodicity.
In this section we discuss an elementary construction of mixing auto-

morphism of K3 surfaces, using complex tori. The same construction yields
automorphisms where δ(f) is not a root of unity. For example we will show:

Theorem 4.1 For every a = 0, 1, 2 . . ., there exists a mixing automorphism
of a K3 surface f : X → X such that λ(f) and δ(f) are roots of the Salem
polynomial S(t) = t6 − at5 − t4 + (2a − 1)t3 − t2 − at + 1.

Complex tori. An n-dimensional complex torus is a compact complex Lie
group of the form Y = Cn/Λ, where Λ is a lattice in Cn. As in the case of
K3 surfaces, the canonical bundle of Y is trivial; Hn,0(Y ) is 1-dimensional,
spanned by the holomorphic form ξ = dz1 ∧ · · · ∧ dzn.

Let Aut(Y ) denote the automorphisms of Y as a complex Lie group.
Elements F ∈ Aut(Y ) correspond bijectively to linear maps

F̃ : Cn → Cn

satisfying F̃ (Λ) = Λ. The eigenvalues (λ1, . . . , λn) of F̃ coincide with the
eigenvalues of F ∗|H1(Y ). Defining λ(F ) as the spectral radius of F ∗|H∗(Y )
and δ(F ) as F ∗ξ/ξ, one can easily check that:

λ(F ) =
∏

{|λi|2 : |λi| ≥ 1} and

δ(F ) = λ1λ2 · · · λn.

We have|δ(F )| = |det(F )| = 1.
The measure ξ ∧ ξ on Y is Aut(Y )-invariant. Using Fourier analysis on

the space of square-integrable functions L2(Y ), one finds (cf. [Man, Chapter
II, 3.1, 8.5 and 8.6]):

Theorem 4.2 An automorphism F ∈ Aut(Y ) is ergodic iff F is mixing iff
no eigenvalue of F ∗|H1(Y ) is a root of unity.

Kummer surfaces. Now let Y = C2/Λ be a 2-dimensional complex torus,
and let ι : Y → Y be the involution ι(y) = −y. Blowing up the 16 double
points of the quotient space Y/ι, we obtain the Kummer surface X = κ(Y );
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it comes equipped with a degree 2 rational map Y 99K X. The complex
manifold X is simply-connected, and the form ξ = dz1 ∧ dz2 on Y descends
to a nowhere-vanishing holomorphic (2,0)-form η on X; thus X is a K3
surface.

Since every F ∈ Aut(Y ) commutes with the involution ι, it gives rise to
an automorphism f = κ(F ) ∈ Aut(X).

Theorem 4.3 Let F be an automorphism of a complex 2-torus Y , and f
the corresponding automorphism of the Kummer surface X = κ(Y ). Then

δ(F ) = δ(f), λ(F ) = λ(f),

and F is mixing ⇐⇒ f is mixing.

Proof. The rational map Y 99K X determines a natural isomorphism
H2(X) = H2(Y ) ⊕ CY [2], where Y [2] ⊂ Y denotes the 16 points of order 2
[BPV, VIII.5]. Under this isomorphism, the action of f∗|H2(Y ) corresponds
to the action of F ∗|H2(Y ) together with the action of F by permutations
on Y [2]; thus λ(f) = λ(F ). Moreover H2,0(X) corresponds to H2,0(Y ),
so δ(f) = δ(F ). For the assertions on mixing, use the fact that L2(X) is
canonically identified with the set of even functions in L2(Y ).

Example: SL2(Z). As a first example, let Y = E × E where E = C/Λ is
a 1-dimensional complex torus. Then each matrix A =

(
a b
c d

)
∈ SL2(Z) acts

on Y by
FA(e1, e2) = (ae1 + be2, ce1 + de2),

and FA is mixing iff A has no eigenvalues on S1. Thus each matrix A ∈
SL2(Z) with |Tr A| > 2 gives rise to a mixing automorphism f = κ(FA) on
the Kummer surface X = κ(E × E).

Synthesis of dynamics. These SL2(Z) examples satisfy δ(f) = 1. To ob-
tain a greater variety of values for δ(f), we will synthesize an automorphism
from the desired characteristic polynomial for F ∗|H1(Y ).

Theorem 4.4 Let P (t) = t2n + a1t
2n−1 + · · · + a2n−1t + 1 ∈ Z[t] be a

polynomial whose roots occur in conjugate pairs

{α1, α1, . . . , αn, αn}.

Then there is a complex torus Y and an F ∈ Aut(Y ) such that

P (t) = det(tI − F ∗|H1(Y )) and

δ(F ) = α1α2 · · ·αn.
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Proof. Choose a semisimple transformation T ∈ SL2n Z whose character-
istic polynomial is P (t); this is possible because P (0) = 1. Since the roots
of P (t) occur in conjugate pairs, we can find a basis (vi, vi)

n
1 for C2n such

that such that Tvi = αivi. The pairs of conjugate eigenvectors determine
a splitting R2n = ⊕n

1Ei where Ei ⊗ C = Cvi ⊕ Cvi. We can then choose
an R-linear isomorphism φ : R2n → Cn sending each Ei to a coordinate
axis, such that φ(Tv) = F̃ (φ(v)), where F̃ (z1, . . . , zn) = (α1z1, . . . , αnzn).
Setting Λ = φ(Z2n) and Y = Cn/Λ, and letting F̃ descend to F ∈ Aut(Y ),
we obtain the required automorphism.

-2 -1 1 2

-4

-2

2

4

6

8

Figure 3. Salem trace polynomials R(t) = (t − a)(t2 − 4) − 1 for a = 0, 1, 2.

Examples: degree 6 Salem numbers. For any integer a ≥ 0, it is easy
to check that

P (t) = t4 + at2 + t + 1

has only complex roots, say {α, β, α, β} with |α| > |β|. By the preceding
result, there is a complex 2-torus Y and an automorphism F ∈ Aut(Y ) such
that

δ(F ) = αβ, λ(F ) = |α|2,
and P (t) is the characteristic polynomial of F ∗|H1(Y ).

The products of pairs of distinct roots of P (t) give the roots of the
characteristic polynomial

S(t) = t6 − at5 − t4 + (2a − 1)t3 − t2 − at + 1

of F ∗|H2(Y ) = ∧2H1(Y ). Thus δ(F ) and λ(F ) are roots of S(t). Similarly,
τ = λ(F ) + λ(F )−1 > 2 is a root of the cubic polynomial

R(t) = (t − a)(t2 − 4) − 1.
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See Figure 3. (The formulas for S(t) and R(t) come from a straightforward
calculation with determinants and the companion matrix of P (t).)

Since R(−2) = R(2) = −1 while R(−1) > 0, the roots of R(t) other than
τ lie in the interval [−2, 2], and since R(n) 6= 0 for n ∈ Z, R(t) is irreducible.
Thus R(t) is a Salem trace polynomial. Therefore λ(F ) is a sextic Salem
number, and S(t) is a Salem polynomial.

Proof of Theorem 4.1. In the examples just discussed, pass to the Kum-
mer surface X = κ(Y ).

Note that in these examples, δ(F ) = αβ is not a root of unity, since it is
conjugate to λ(F ) = |α|2 > 1.

Lattès examples. We remark that the automorphisms of Kummer surfaces
discussed above are higher-dimensional relatives of the Lattès examples of
rational maps f : P1 → P1. To construct f , start with an endomorphism
F (y) = ny of a complex 1-torus Y = C/Λ. Observing that the quotient
X = Y/(y ∼ −y) is isomorphic to P1, one finds that F descends a rational
map f : P1 → P1 of degree n2, and f is ergodic if n > 1. These are among
the simplest rational maps with Julia set the whole Riemann sphere [Mil,
§7], [Mc, §3.5].
Towards Siegel disks. As discussed above, the ergodicity of an automor-
phism of a complex torus can be detected by its action on cohomology: F
is ergodic iff the eigenvalues of F ∗|H1(Y ) include no roots of unity.

Similarly, the next three sections develop a cohomological criterion for
the existence of a Siegel disk on a K3 surface, based on the action of f∗ on
H2(X).

5 Siegel disks and transcendence theory

This section applies transcendence theory to establish the existence of Siegel
disks in an arithmetic setting. The main result is:

Theorem 5.1 Let X be a complex n-manifold, and let f : X → X be an
holomorphic map fixing p ∈ X. If the eigenvalues (λi) of Dfp are algebraic,
multiplicatively independent and satisfy |λi| = 1, then f has a Siegel disk at
p.

The proof uses results originally developed to address Hilbert’s seventh
problem, on the transcendence of numbers like 2

√
2.
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Definitions. Let (λ1, . . . , λn) be nonzero complex numbers. We say (λi)
are multiplicatively independent if the only solution to

λk1

1 · · ·λn
kn = 1

with k = (k1, . . . , kn) ∈ Zn is k = 0. The numbers (λi) are jointly Diophan-
tine if there exist C,M > 0 such that for all integral exponents (k1, . . . , kn) ∈
Zn, not all zero, we have

|λk1

1 · · ·λn
kn − 1| > C(max |ki|)−M > 0. (5.1)

Theorem 5.2 Let (λ1, · · · , λn) be multiplicatively independent algebraic num-
bers on S1. Then (λ1, . . . , λn) are jointly Diophantine.

Proof. By multiplicative independence, the numbers (2πi, log λ1, . . . , log λn)
are linearly independent over Q. Using the Gel’fond-Baker method, Fel’dman
shows that linear independence over Q implies linear independence over any
number field, in the following effective sense [Fe]: for any algebraic numbers
(ki) not all zero, we have

|k02πi + k1 log λ1 + · · · + kn log λn| > exp(−M(d + log H)), (5.2)

where d is the degree of the field Q[k0, . . . , kn, λ1, . . . , λn], M = M(λi, d) is
a constant depending only on the numbers (λi) and d, H = max H(ki), and
the height H(k) =

∑ |aj | if p(k) = 0 where p(x) =
∑s

0 ajx
j is an irreducible

polynomial with relatively prime coefficients aj ∈ Z.
For ki ∈ Z we have H = max |ki|, and M depends only on (λi); therefore

exp(−M(d + log H)) = C(max |ki|)−M

for some C > 0. Thus (5.2) implies the Diophantine condition (5.1).

Remark. Taking λk1

1 = αβ , Fel’dman’s bound (5.2) implies the Gel’fond-
Schneider theorem: αβ is transcendental for all algebraic numbers α 6= 0, 1
and β 6∈ Q.

Siegel disks. Let F : Cn → Cn be a linear map of the form

F (z1, . . . , zn) = (λ1z1, . . . , λnzn)

with |λi| = 1. We say F is an irrational rotation if the numbers (λi) are
multiplicatively independent; equivalently, if the orbits of F on (S1)n are
dense.
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Now let f : X → X be a holomorphic endomorphism of a complex n-
manifold, and suppose f(p) = p. We say f has a Siegel disk U , centered
at p, if there is a neighborhood U of p and an analytic isomorphism to a
polydisk,

φ : (U, p) → (∆n, 0),

sending the action of f |U to the action of an irrational rotation F |∆n.
Here is a local criterion for the existence of a Siegel disk.

Theorem 5.3 If the derivative Dfp : TpX → TpX has jointly Diophantine
eigenvalues (λ1, . . . , λn) ∈ (S1)n, then f has a Siegel disk at p.

The proof is due to Siegel for n = 1 and to Sternberg for n > 1 [St, p. 465].

Proof of Theorem 5.1: Combine the results of Fel’dman and Sternberg.

Notes. See [Ti] and [Her] for more on the Gel’fond-Baker method and
analytic linearization respectively. In Theorem 5.3, (5.1) can be replaced
by the weaker condition infj |λk1

1 · · · λn
kn − λj| > C|k1 + · · · + kn|−M for all

(k1, . . . , kn) ∈ Zn with ki ≥ 0 and
∑

ki ≥ 2.

6 Holomorphic Lefschetz numbers

Let f : X → X be an automorphism of a complex manifold with a unique
fixed-point p. In this section we show the derivative Dfp is determined by
the action of f∗ on Hr,s(X). In the special case of K3 surfaces, we obtain:

Theorem 6.1 Let f : X → X be an automorphism of a K3 surface with a
unique transverse fixed-point p. Then we have

Tr Dfp =
1 + δ + δ2

1 + δ
(6.1)

where δ = δ(f).

The Atiyah-Bott fixed-point theorem. Let f : X → X be a holomor-
phic automorphism of a compact complex manifold X with real dimension
n. Then f acts on the singular cohomology groups Hq(X), 0 ≤ q ≤ n, as
well as the Dolbeault cohomology groups Hr,s(X). We define the Lefschetz
number of f by

L(f) =

n∑

q=0

(−1)q Tr f∗|Hq(X),
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and the rth holomorphic Lefschetz number of f by

Lr(f) =
n∑

s=0

(−1)s Tr f∗|Hr,s(X).

It is known that L(f) =
∑

(−1)rLr(f), and if f has a finite set of fixed-points
then their number, counted with multiplicity, is L(f).

We say f has transverse fixed-points if the graph of f is transverse to
the diagonal in X × X. In this case, the set of fixed-points p ∈ X is finite,
every fixed-point has multiplicity one, and by transversality the complex
derivative

Dfp : Tp(X) → Tp(X)

satisfies det(I −Dfp) 6= 0. The Atiyah-Bott fixed-point theorem states [AB,
(4.9-4.10)]:

Theorem 6.2 If f has transverse fixed-points, then

Lr(f) =
∑

f(p)=p

Tr∧rDfp

det(I − Dfp)
·

Corollary 6.3 If f has a unique, transverse fixed-point p, then we have

det(tI − Dfp) = L0(f)−1
n∑

0

(−1)rLr(f)tn−r.

Proof. Apply the formula det(I − A) =
∑

(−1)r Tr∧rA.

Proof of Theorem 6.1. From the Atiyah-Bott formula with r = 2 and
the fact that δ = Tr f∗|H2,0(X) = detDfp, we obtain

L2(f) = 1 + δ =
Tr∧2Dfp

det(I − Dfp)
=

δ

1 − Tr Dfp + δ
,

which gives (6.1).

21



7 Siegel disks on K3 surfaces

With the results of the preceding sections in hand, we can now establish a
cohomological criterion for the existence of a Siegel disk on a K3 surface.

Theorem 7.1 Let f : X → X be an automorphism of a K3 surface. Sup-
pose that:

1. The characteristic polynomial of f∗|H2(X) is a Salem polynomial;

2. Tr f∗|H2(X) = −1;

3. The determinant δ = δ(f) satisfies τ = δ + δ−1 > 1 − 2
√

2; and

4. The algebraic integer τ has a conjugate τ ′ < 1 − 2
√

2.

Then f has a unique fixed-point p, and p is the center of a Siegel disk.

We begin by remarking that Siegel disks are rare.

Theorem 7.2 An automorphism of a projective K3 surface never has a
Siegel disk. Moreover, there are at most countably many K3 surface auto-
morphisms (X, f) with Siegel disks, up to isomorphism.

Proof. Suppose f has a Siegel disk centered at p, and let α, β be the
eigenvalues of Dfp. Since α and β are multiplicatively independent, δ(f) =
αβ is not a root of unity. By Theorems 3.5 and 3.6, X is non-projective,
and its Hodge structure is rigid, limiting (X, f) to a countable set.

Resonances. Theorem 7.2 does not rule out the possibility of a ‘resonant’
rotation domain on a projective K3 surface. That is, f : X → X might
conceivably have a linearizable fixed-point p where the eigenvalues λ1, λ2 of
Dfp lie on S1 but are not multiplicatively independent. Nevertheless, such
a fixed-point seems unlikely to exist. Generically, a resonant fixed-point is
not even formally linearizable; and if λk1

1 λk2

2 = 1, then zk1

1 zk2

2 is invariant
under the linear map (z1, z2) 7→ (λ1z1, λ2z2), and thus f must preserve a
pencil of analytic curves near p.

We remark that Siegel disks can exist only for automorphisms of positive
entropy.

Theorem 7.3 If f : X → X is a K3 surface automorphism with a Siegel
disk, then λ(f) > 1.

Proof. Since δ(f) is an eigenvalue of f∗|H2(X) and not a root of unity,
there must also be an eigenvalue off the unit circle.
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To obtain a Siegel disk we need conditions for the existence of a fixed-
point p and for multiplicative independence of the eigenvalues of Dfp.

Theorem 7.4 Suppose Tr f∗|H2(X) = −1 and (I − f∗) is invertible on
H1,1(X). Then f has a unique, transverse fixed-point p ∈ X.

Proof First note that fixed-points of f are isolated; otherwise the locus
f(p) = p would contain a 1-dimensional analytic cycle, representing an f∗-
invariant class C ∈ H(1,1)(X). Since every K3 surface is Kähler, we would
have C 6= 0, contrary to our hypothesis on I − f∗.

Next, recall that every isolated fixed-point of a holomorphic map has
positive multiplicity. Since L(f) = 2 + Tr f∗|H2(X) = 1, f has a unique
fixed-point p, of multiplicity one and hence transverse.

Lemma 7.5 Let δ be a root of a Salem polynomial with |δ| = 1, let τ =
δ + 1/δ and let τ ′ be a conjugate of τ . Suppose we have

τ ′ < 1 − 2
√

2 < τ.

Then the roots (α, β) of the simultaneous equations

αβ = δ and α + β =
1 + δ + δ2

1 + δ
(7.1)

are multiplicatively independent, with |α| = |β| = 1.

Proof. Since αβ/δ = 1 and |δ| = 1, we have α, β ∈ S1 ⇐⇒ (α + β)2/δ ∈
[0, 4]. By (7.1), this condition is the same as

(1 + δ + δ2)2

δ(1 + δ)2
=

(δ−1 + 1 + δ)2

(δ−1 + 2 + δ)
=

(τ + 1)2

τ + 2
∈ [0, 4],

which holds iff τ ∈ (1− 2
√

2, 1+2
√

2). By assumption τ > 1− 2
√

2, and we
have τ < 2 < 1 + 2

√
2 because |δ| = 1. Thus |α| = |β| = 1.

By Galois theory, there exist conjugates (α′, β′, δ′) of (α, β, δ) also sat-
isfying (7.1), with δ′ + 1/δ′ = τ ′. Since τ ′ < 2 and δ′ is a root of a Salem
polynomial, we have |δ′| = 1. But now τ ′ 6∈ (1 − 2

√
2, 1 + 2

√
2), so we have

|α′| = |β′|−1 6= 1.
Now suppose αiβj = 1. Then (α′)i(β′)j = 1 as well, and thus i = j.

Therefore (αβ)i = δi = 1. Since δ satisfies a Salem polynomial, it is not
a root of unity, and thus i = 0. Therefore α and β are multiplicatively
independent.
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Proof of Theorem 7.1. By Theorem 7.4, f has a unique fixed-point
p ∈ X. Via Theorem 6.1, the Atiyah-Bott formula implies the eigenvalues
(α, β) of Dfp satisfy (7.1) with δ = δ(f) = det Dfp. Since δ(f) is an algebraic
number, so are α and β. The preceding Lemma shows α and β lie on the
unit circle and are multiplicatively independent. Theorem 5.1 states that
such algebraic numbers satisfy the Diophantine condition for linearization,
so f has a Siegel disk at p.

8 Lattices in number fields

In this section we use number theory to construct lattice automorphisms
with given characteristic polynomials. Via the Torelli theorem, these lattice
automorphisms will give rise to K3 surface automorphisms.

To motivate the construction, suppose F : B → B is an automorphism
of a lattice, with irreducible characteristic polynomial s(y) = det(yI −F ) ∈
Z[y]. Since the pairing between the λ and µ eigenspaces of F is nontrivial
iff λµ = 1, the eigenvalues of F occur in reciprocal pairs. Thus s(y) has
degree 2d, and there is a degree d polynomial r(x) ∈ Z[x] whose roots have
the form τ = λ + λ−1 as λ ranges over the roots of s(y).

In this section we reverse the discussion. Starting from a degree d
polynomial r(x) such that the associated degree 2d polynomial s(y) is irre-
ducible, we construct a lattice B and an automorphism F : B → B with
characteristic polynomial s(y). The construction can be twisted by a unit
u ∈ Z[x]/(r(x)), yielding lattices B(u) with a range of different of signatures.

Discriminants. Let L ∼= Zn be a lattice with inner product 〈x, y〉L ∈ Z.
Given a basis (ei)

n
1 for L, the discriminant of L is given by

disc(L) = det(〈ei, ej〉);

it is independent of the choice of basis. The inner product allows us to
regard L as a subgroup of L∗ = Hom(L, Z), via x(y) = 〈x, y〉L, and we have
|disc(L)| = |L∗/L|. Thus L is unimodular iff |disc(L)| = 1.

A symmetric linear embedding Q : L → L determines a new lattice L(Q)
with the same underlying free abelian group as L, but with the new inner
product

〈x, y〉L(Q) = 〈Qx, y〉L.

We have disc(L(Q)) = det(Q) · disc(L).

Trace forms. Lattices occur naturally in number rings. Let r(x) ∈ Z[x]
be a degree d irreducible monic polynomial with roots (xi)

d
1 in C. Let A be
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the integral domain Z[x]/r(x) and let k be its field of fractions. Define an
inner product on A by

〈f1, f2〉A = Trk
Q

(
f1(x)f2(x)

r′(x)

)
=

d∑

1

(
f1(xi)f2(xi)

r′(xi)

)

(where r′(x) = dr/dx).
As was known to Euler, this inner product takes values in Z and makes

A into a unimodular lattice. To prove this, one can use the residue theorem
to compute:

〈1, xn〉A =
∑

Res(xn dx/r(x), xi)

= −Res(xn dx/r(x),∞) =

{
0, 0 ≤ n < deg(r) − 1

1, n = deg(r) − 1;

compare [Ser2, §III.6].
Invariant forms. Now suppose x2 − 4 is not a square in k. Let K = k(y)
be the quadratic extension of k obtained by adjoining a root of the equation

y +
1

y
= x.

Let s(y) ∈ Z[y] be the degree 2d minimal polynomial for y over Q. Regarding
K ∼= Q[y]/(s(y)) as a space of polynomials in y, let F : K → K be the
multiplication map

F (g(y)) = y · g(y).

Then s(y) is the characteristic polynomial for F as a linear endomorphism
of K/Q.

We will construct a lattice B ⊂ K such that F is an isometry of B. For
the underlying group, we take

B = Z[y]/(s(y)) = A ⊕ Ay ⊂ K.

Then F (B) = B.
The Galois group of K/k is generated by σ(y) = 1/y. Clearly Bσ = B,

and the trace map

TrK
k (g) = g + gσ = g(y) + g(y−1)

sends B into A. We make B into a lattice by defining the inner product:

〈g1, g2〉B = 〈1,TrK
k (g1g

σ
2 )〉A = TrK

Q

(
g1g

σ
2

r′(x)

)
.
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Then F : B → B is an isometry, because

F (g1)F (g2)
σ = (yg1(y))(yg2(y))σ = yg1(y)y−1g2(y

−1) = g1g
σ
2 .

Unimodularity. Our main concern is with automorphisms of unimodular
lattices. Thus it is of interest to compute the discriminant of B.

Theorem 8.1 The lattice B is even, with discriminant satisfying

|disc(B)| = |Nk
Q(x2 − 4)| = |r(2)r(−2)|.

Here Nk
Q : A → Z is the norm map, defined by Nk

Q(f) =
∏d

1 f(xi).

Proof. The inner product on A makes A2 into a unimodular lattice as well.
Define Q : A2 → A2 by

Q(a, b) =

(
2 x

x 2

)(
a

b

)
·

Then for a + by ∈ A ⊕ Ay = B we have

(a + by)(a + by)σ = a2 + b2 + abx,

and therefore

〈a + by, a + by〉B = 2〈1, a2 + b2 + abx〉A = 〈Q(a, b), (a, b)〉A2 .

Thus B is even, and we have

|disc(B)| = |det(Q)| = |Nk
Q(4− x2)| = |Nk

Q(2− x)Nk
Q(2 + x)| = |r(2)r(−2)|,

since Nk
Q(n − x) = r(n).

Corollary 8.2 The following conditions are equivalent: (a) B is an even,
unimodular lattice; (b) y + 1 and y − 1 are units in B; (c) x + 2 and x − 2
are units in A; (d) |r(±2)| = 1; (e) |s(±1)| = 1.

Proof. Use the fact that NK
Q (y ± 1) = Nk

Q(x ± 2).

26



Twisting by a unit. Let u ∈ A× be a unit in A. Then multiplication by
u is a symmetric automorphism of A with determinant ±1, so the lattice
A(u) with inner product

〈f1, f2〉A(u) = 〈uf1, f2〉A

is still unimodular. Similarly, the lattice B(u) with inner product

〈g1, g2〉B(u) = 〈ug1, g2〉B

is still even, with |disc(B(u))| = |disc(B)|; and F : B(u) → B(u) is still an
isometry, since uσ = u.

Signature. In general the signature of B(u) varies with the unit u. To
calculate the signature, first observe that the lattice B(u) determines a Her-
mitian inner product on B(u) ⊗ C. Using the fact that F : B(u) → B(u) is
an isometry, we obtain an orthogonal, F -invariant decomposition

B(u) ⊗ C =
⊕

r(τ)=0

E(τ),

where E(τ) = Ker(F + F−1 − τI) is 2-dimensional, and the eigenvalues
λ, λ−1 of F |E(τ) satisfy λ + λ−1 = τ .

Theorem 8.3 Let τ be a zero of r(x). For τ ∈ R, the subspace E(τ) ⊂
B(u) ⊗ C has signature

(2, 0) if |τ | < 2 and u(τ)r′(τ) > 0;

(0, 2) if |τ | < 2 and u(τ)r′(τ) < 0; and

(1, 1) otherwise.

For τ 6∈ R the subspace E(τ) ⊕ E(τ ) has signature (2, 2).

Proof. First suppose τ ∈ R. Then using the isomorphism B = A+Ay ∼= A2

as in Theorem 8.1, we find the Hermitian inner product on E(τ) ∼= C2 comes
from the complexification of the quadratic form

q(a, b) = 2u(τ)(a2 + b2 + abτ)/r′(τ)

on R2. The signature of the form (a2 + b2 +abτ) is (1, 1) if |τ | > 2 and (2, 0)
if |τ | < 2. The signature of q(a, b) is the same, unless u(τ)/r′(τ) < 0, in
which case it is reversed.
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Now suppose τ 6∈ R, and let S ⊂ E(τ) ⊕ E(τ) be the span of the (λ, λ)
eigenvectors for F , where λ + λ−1 = τ . Since τ 6∈ R, λ is distinct from
both λ and λ−1; therefore S is a 2-dimensional isotropic subspace, and thus
E(τ) ⊕ E(τ) has signature (2, 2).

Corollary 8.4 The lattice B(u) has signature (d, d) + (p,−p) + (−q, q),
where p is the number of roots of r(x) in [−2, 2] satisfying u(τ)r′(τ) > 0,
and q is the number satisfying u(τ)r′(τ) < 0.

Unramified Salem polynomials. As an application, we show certain
Salem numbers can be realized as eigenvalues of automorphisms of unimod-
ular lattices. Following Corollary 8.2, we say a Salem polynomial S(y) (or
the corresponding Salem number) is unramified if |S(±1)| = 1; and a Salem
trace polynomial R(x) is unramified if |R(±2)| = 1.

Theorem 8.5 Let S(y) be an unramified Salem polynomial of degree 2d.
Then d is odd, and S(y) is the characteristic polynomial of an automorphism
of the even, unimodular lattice L of signature (d, d).

Proof. Let R(x) be the associated Salem trace polynomial of degree d,
with roots τ1, . . . , τd−1 in (−2, 2) and τd > 2. Since R(x) has no roots in
the interval (−∞,−2] and exactly one root in (2,∞), we have R(2) < 0
and R(−2)(−1)d > 0. Since S(y) is unramified, |R(±2)| = 1, and thus
R(−2) = (−1)d, R(2) = −1. But R(2) − R(−2) = 0mod 4 and therefore d
is odd.

Now let B = Z[y]/S(y) and F (g) = yg as above. Then F is an isometry
of the even, unimodular lattice L = B(1). Since R′(x) alternates sign at the
zeros of R(x), the signatures of the summands E(τi) of B(1) ⊗ C alternate
between (2, 0) and (0, 2) for i = 1, . . . , d − 1. The last summand E(τd) has
signature (1, 1), so altogether B(1) has signature (d, d).

Ramification and parity. Here is another explanation for the parity
constraint on unramified Salem polynomials. If S(y) has degree 2d and
d is even, then R(x) has an odd number of zeros in the range [−2, 2], and
therefore the lattice B(1) has signature (d−1, d+1). But an even unimodular
lattice of signature (p, q) satisfies p+ q = 0mod 8, so S(y) must be ramified.

Sextic Salem numbers, reprise. The simplest unramified Salem poly-
nomials are the sextics of the form

S(y) = y6 − ay5 − y4 + (2a − 1)y3 − y2 − ay + 1, a ≥ 0.
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There are no unramified Salem polynomials of lower degree, and these are
the only unramified Salem polynomials of degree 6.

In §4 we showed S(y) arises as the characteristic polynomial of F ∗|H2(Y, Z),
where F : Y → Y is an automorphism of a complex torus. Noting that the
intersection pairing makes H2(Y, Z) into an even, unimodular lattice of sig-
nature (3,3), we obtain a geometric instance of the result above.

9 From Salem numbers to automorphisms

Consolidating the preceding results, we can now give

– a general construction of K3 surface automorphisms from unramified
Salem numbers, and

– a criterion for the resulting automorphism to have a Siegel disk.

Theorem 9.1 Let R(x), U(x) ∈ Z[x] be a pair such that:

• R(x) is an unramified degree 11 Salem trace polynomial;

• U(x) represents a unit in Z[x]/(R(x)); and

• there is a unique root τ of R(x) in [−2, 2] such that U(τ)R′(τ) > 0.

Then there exists a K3 surface automorphism f : X → X such that

• δ(f) + δ(f)−1 = τ , and

• S(x) = det(xI − f∗|H2(X)),

where S(x) is the degree 22 Salem polynomial associated to R(x).

Note that S(x) = x11R(x + x−1).

Proof. The trace-form construction of §8 yields a lattice automorphism
F : B(U) → B(U) with characteristic polynomial S(x). Since R(x) is
unramified, B(U) is an even, unimodular lattice, with signature (3, 19) by
Corollary 8.4.

Using the Torelli theorem, surjectivity of the period mapping, and unique-
ness of the even unimodular (3,19) lattice, Theorem 3.4 (Synthesis) yields a
K3 surface automorphism f : X → X and a marking ι : H2(X, Z) → B(U)
such that F = ι ◦ f∗ ◦ ι−1. Thus S(x) is also the characteristic polynomial
of f∗|H2(X).
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By Theorem 8.3, the eigenspaces of F + F−1 are 2-dimensional, and

E(τ) = Ker(F + F−1 − τI) ⊂ B(U) ⊗ C

is the unique eigenspace of F+F−1 with signature (2, 0). Similarly, H2,0(X)⊕
H0,2(X) ⊂ H2(X) is the unique eigenspace of f∗ + (f∗)−1 with signature
(2, 0). Thus ι−1(E(τ)) = H2,0(X)⊕H0,2(X) and therefore δ(f)+δ(f)−1 = τ .

Traces. The trace of a monic polynomial P (x) = xd + a1x
d−1 + · · · + ad is

−a1, the sum of its roots. The traces of R(x) and S(x) agree and coincide
with Tr(f∗|H2(X)). Continuing from the previous result, the cohomological
criterion for a Siegel disk given by Theorem 7.1 implies:

Theorem 9.2 Suppose in addition that R(x) and τ satisfy:

• The trace of R(x) is −1,

• τ > 1 − 2
√

2 = −1.8284271 . . ., and

• R(x) has a root τ ′ < 1 − 2
√

2.

Then f has a unique fixed-point p ∈ X, and p is the center of a Siegel disk.

10 Examples of Siegel disks

In this section we exhibit polynomials R(x) and U(x) satisfying Theorem
9.2 and thereby prove:

Theorem 10.1 There exist K3 surface automorphisms with Siegel disks.

Table of Salem polynomials and units. Table 4 presents 10 examples of
K3 surface automorphisms with Siegel disks. Each example occupies three
rows.

The first two rows give the coefficients of a degree 22 Salem polynomial
S(x) and the associated degree 11 Salem trace polynomial R(x). Since the
coefficients of S(x) are symmetric — that is, the coefficients of xi and x22−i

agree — we only give them up to x11.
The third row exhibits a unit U(x) compatible with R(x), meaning there

is a unique root τ of R(x) in [−2, 2] such that R′(τ)U(τ) > 0. (In general
there are many such units.)
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For each example, the pair (R(x), U(x)) satisfies the hypotheses of The-
orem 9.2, and so it determines a K3 surface automorphism f : X → X with
a Siegel disk. The Salem polynomial S(x) is the characteristic polynomial of
f |H2(X); its largest root λ(f) is a Salem number, given in the first column
of the table. The topological entropy log λ(f) is a natural measure of the
complexity of f , so we have ordered the table with λ(f) increasing.

Detailed example. To explain the table more fully, we present some details
regarding the degree 22 Salem number λ ≈ 1.37289, the first example listed.
This Salem number is a root of the polynomial

S(x) = 1 + x − x3 − 2x4 − 3x5 − 3x6 − 2x7 + 2x9 + 4x10 + 5x11

+4x12 + 2x13 − 2x15 − 3x16 − 3x17 − 2x18 − x19 + x21 + x22.

The corresponding Salem trace polynomial, satisfied by λ + λ−1, is

R(x) = −1 − 8x + 24x2 + 42x3 − 54x4 − 66x5 + 40x6 + 42x7 − 11x8

−11x9 + x10 + x11.

Note that both polynomials have trace −1 and are unramified — for exam-
ple, R(±2) = −1. The graph of R(x), displaying its 11 real roots, is shown
in Figure 5. All roots except λ + λ−1 ≈ 2.10128 lie in [−2, 2], as required.

A unit compatible with R(x) is given by

U(x) = −2x + 6x3 − 5x5 + x7.

To verify that U(x) ∈ Z[x]/(R(x)) is a unit, one can check that |det U(MR)| =
1, where MR is the 11 × 11 companion matrix of R.

There is a unique root τ ≈ −1.66716 of R(x) in [−2, 2] with R′(τ)U(τ) >
0. On the other hand, there are two roots of R(x) smaller than 1 − 2

√
2 ≈

−1.82843, the smallest being τ ′ ≈ −1.97098.
Thus the hypotheses of Theorem 9.2 are satisfied, and we obtain an

example of a K3 surface automorphism f : X → X with a Siegel disk. In
fact we obtain a pair of complex-conjugate examples, one for each root of
the equation δ(f) + δ(f)−1 = τ . For the root δ(f) ≈ exp(2.55635i), we
obtain a Siegel disk centered at p ∈ X with the eigenvalues of Dfp given by

{α, β} ≈ {exp(−2.81769i), exp(−0.909141i)},

according to equation (7.1).

Finiteness. Note that the set of Salem numbers of degree 22 and trace −1
is finite. More generally, the set of Salem polynomials S(x) of degree d and
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λ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

1.37289 1 1 0 −1 −2 −3 −3 −2 0 2 4 5

−1 −8 24 42 −54 −66 40 42 −11 −11 1 1

0 −2 0 6 0 −5 0 1

1.45099 1 1 −1 −3 −3 −1 2 4 4 1 −3 −5

−5 −4 49 37 −100 −81 58 50 −13 −12 1 1

2 0 −9 14 23 −23 −25 9 9 −1 −1

1.48115 1 1 0 −2 −3 −3 −2 −1 0 2 4 5

−1 4 36 23 −73 −58 48 41 −12 −11 1 1

0 −1 3 6 −4 −5 1 1

1.52612 1 1 0 −2 −4 −4 −2 1 3 3 2 1

−1 0 20 12 −65 −51 47 40 −12 −11 1 1

0 −1 −5 17 37 −12 −33 2 10 0 −1

1.55377 1 1 −1 −3 −3 −1 1 1 1 1 1 1

−5 4 61 39 −103 −82 58 50 −13 −12 1 1

3 3 −6 16 37 −12 −33 2 10 0 −1

1.60709 1 1 0 −2 −4 −5 −4 −1 2 4 5 5

−1 −4 20 21 −61 −53 46 40 −12 −11 1 1

0 −7 8 34 −6 −32 1 10 0 −1

1.6298 1 1 −1 −3 −3 −2 −1 0 2 3 2 1

−9 −8 58 50 −98 −84 57 50 −13 −12 1 1

−4 −6 16 14 −20 −7 8 1 −1

1.6458 1 1 −1 −4 −5 −2 4 8 7 1 −6 −9

−1 8 40 2 −110 −65 65 48 −14 −12 1 1

−2 2 21 −4 −25 1 9 0 −1

1.66566 1 1 −2 −5 −3 3 7 4 −2 −4 −1 1

−1 32 112 36 −164 −103 78 59 −15 −13 1 1

−8 −33 −23 49 62 −22 −42 3 11 0 −1

1.69496 1 1 −1 −4 −5 −2 3 6 5 1 −3 −5

−1 12 48 5 −112 −66 65 48 −14 −12 1 1

0 1 −18 −7 48 14 −35 −7 10 1 −1

Table 4. Salem polynomials and units: (S(x), R(x), U(x)).
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Figure 5. Graph of the degree 11 Salem trace polynomial R(x).

trace t is finite, since the trace controls the size of the unique root outside
the unit circle, and the size of the roots controls the size of the (integral)
coefficients of S(x).

One can also show that S(x) = det(xI − f∗|H2(X)) determines the
automorphism f : X → X up to a finite number of choices. Thus Theorem
9.2 yields only a finite number of Siegel disk examples up to isomorphism.

Searching for Salem numbers. Table 4 is the result of an intensive
computer search for unramified degree 22 Salem numbers of trace −1. Al-
together we located 51 such numbers, ranging from 1.37289 to 2.51503; the
first 10 appear in the table. Sturm’s method, based on alternations of signs
[La, XI.2], was used to count the number of roots of a candidate Salem trace
polynomial R(x) in the interval [−2, 2].

All 51 Salem numbers we found arise from K3 surface automorphisms
with Siegel disks. That is, for each of the corresponding Salem trace poly-
nomials R(x), there was a compatible unit U(x) satisfying Theorem 9.2.

Generally many units are compatible with a given R(x), allowing one
to vary τ = δ(f) + δ(f)−1 through different roots of R(x) and to obtain
several distinct K3 surface automorphisms for the same Salem polynomial.
On the other hand, units which differ by a square give isomorphic lattice
automorphisms F : B(U) → B(U), so only the class of U in the finite group
A×/(A×)2 is relevant.

To find U(x), we used an algebra package to obtain a basis for the unit
group of the order A = Z[x]/(R(x)) in the totally real field k = Q[x]/(R(x)).
It was then straightforward to search the cosets of A×/(A×)2 for a compat-
ible unit.
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Negative trace. We remark that Salem numbers with negative trace seem
to be rather rare. Among the 630 degree 22 Salem polynomials with coeffi-
cients satisfying |ai| ≤ 1, 596 have trace 1, 33 have trace 0 and only one has
trace −1, namely

S(x) = 1 + x − x3 − x4 − x5 − x6 − x7 − x8 − x9 − x10 − x11

−x12 − x13 − x14 − x15 − x16 − x17 − x18 − x19 + x21 + x22.

On the other hand, Smyth has shown there exist infinitely many Salem
numbers with trace −1 [Smy].

Question. Are there any Salem numbers with trace less than −1?

11 Limits of Kähler-Einstein metrics

In this section we present an application of dynamics to the differential
geometry of K3 surfaces.

Kähler-Einstein metrics. Let g be a Kähler metric on a compact complex
manifold X, with associated symplectic (1, 1)-form ωg. Then g is a Kähler-
Einstein metric if there is a constant κ ∈ R such that

Ric(g) = κ · ωg,

where Ric(g) = −∂∂ log det g is the Ricci form of g.
Now suppose X is a K3 surface. Then by triviality of the canonical

bundle, g is a Kähler-Einstein metric ⇐⇒ Ric(g) = 0 ⇐⇒ the volume
form ω2

g of g is proportional to η ∧ η, where η 6= 0 is a holomorphic (2, 0)
form on X. Such metrics exist in abundance, according to:

Theorem 11.1 (Yau) Every cohomology class in the Kähler cone CX ⊂
H1,1(X) is represented by the (1, 1)-form ω of a Kähler-Einstein metric.

See [Yau], [Bo].
It would be interesting to understand the behavior of a Kähler-Einstein

metric as its cohomology class [ω] tends to the boundary of Kähler cone.
Here we will show that the metric can collapse to zero on an open set, if X
comes from one of the Siegel disk examples of §10.
Theorem 11.2 Let f : X → X be a K3 surface automorphism with a Siegel
disk U . Then there exists a sequence of Kähler-Einstein metrics on X, with
symplectic forms satisfying

[ωn] → ξ ∈ ∂CX ⊂ H1,1(X), ξ 6= 0,

such that ωn|U → 0 uniformly on compact sets.
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Proof. Since f has a Siegel disk, we have λ = λ(f) > 1 (Theorem 7.3).
Consider any Kähler-Einstein metric g0 on X with (1, 1)-form ω0, and let
ωn = λ−n(fn)∗(ω0). Then ωn is also the (1, 1)-form of a Kähler-Einstein
metric gn, since the condition Ric(g0) = 0 is preserved under pulling back.

We claim the cohomology classes [ωn] converge to an eigenvector ξ 6= 0
in ∂CX satisfying f∗(ξ) = λξ. Indeed, f∗ preserves the intersection form of
signature (1, 19) on H1,1(X), and therefore it determines an isometry F of
the hyperbolic space

H19 ⊂ PH1,1(X)R.

Since we have λ > 1, F translates along a geodesic γ ⊂ H19 joining points
p± ∈ ∂H19, corresponding to the λ±1-eigenspaces of f . For any point q ∈
H19, including that represented by [ω0], we have Fn(q) → p+. Since [ωn] is
[(fn)∗(ω0)] renormalized by the leading eigenvalue of f∗, it converges to a
λ-eigenvector ξ.

Since f |U is conjugate to a rotation, any compact set K ′ ⊂ U can be
enlarged to an f -invariant compact set K ⊂ U . Moreover there is a smooth
f -invariant metric on U . Using this invariant metric to measure the size of
ωn, we have:

‖ωn|K‖∞ = λ−n‖ω0|K‖∞ → 0

as claimed. (In fact ωn|K → 0 in the C∞ topology.)

Eigencurrents. By a result of Cantat, the sequence ωn = λ−n(fn)∗(ω0)
just constructed actually converges to a natural current ω∞ = C+α+ repre-
senting the cohomology class ξ.

Theorem 11.3 (Cantat) Let f : X → X be a K3 surface automorphism
with λ = λ(f) > 1. Then:

• There exists a pair of closed, positive (1, 1)-currents α−, α+, unique
up to scale, such that f∗(α±) = λ±1α±.

• For any other closed, positive (1, 1) current ω, there are constants C±
such that λ−|n|(f±n)∗(ω) → C±α± as n → ∞.

(See [Ca1, §4.2-4.4], or observe that [Ca2, Theorem 2], while stated for
projective surfaces, also applies to Kähler surfaces.)

So we also have:

Theorem 11.4 Let f : X → X be a K3 surface automorphism with a Siegel
disk U . Then the eigencurrents α+ and α− vanish on U .
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[Bo] J. Bourguingon et al. Première classe de Chern et courbure de Ricci:
preuve de la conjecture de Calabi. Astérisque, volume 58, Société
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