1. How many rotationally distinct ways are there to 3-color the faces of a dodecahedron?

Answer: In 9099 ways.

This is an application of the Burnside counting theorem. Let $G \cong A_5$ be the symmetry group of the dodecahedron. Let S be the set of 3-colorings of a dodecahedron with labeled faces. The answer to the question is given by the number of orbits for the natural action of G on this set S. The group $G \cong A_5$ has five conjugacy classes of respective sizes 1, 12, 12, 15, 30: these are (1) the identity; (2) the $2\pi/5$-rotations about a line joining the centers of a pair of opposite faces; (3) $4\pi/5$-rotations about a line joining the centers of a pair of opposite faces; (4) π-degree rotations about a line joining the midpoints of two antipodal edges; and (5) $2\pi/3$-rotation about a line joining a pair of antipodal vertices. The stabilizers in G for these conjugacy classes have respective sizes $3^{12}, 3^{4}, 3^{4}, 3^{6}, 3^{4}$. By Burnside’s counting theorem (Theorem 10.12 in the Course Notes), the number of orbits for the action is equal to

$$|S/G| = \frac{1}{60}(1 \cdot 3^{12} + 12 \cdot 3^{4} + 12 \cdot 3^{4} + 15 \cdot 3^{6} + 20 \cdot 3^{4}) = 9099,$$

which is the answer to the question.

2. Prove that if p is prime, then $(\mathbb{Z}/p)^*$ is cyclic.

By the Euclidean division algorithm, a polynomial of degree d has at most d zeros over any field. Applying this to the polynomial $x^d - 1$ over the finite field $\mathbb{F}_p = \mathbb{Z}/p$, we conclude that, for every $d > 0$, the group $(\mathbb{Z}/p)^*$ has at most d elements of order dividing d. In other words, the finite abelian group $(\mathbb{Z}/p)^*$ has at most one subgroup of any given order. It follows from the structure theorem of finite abelian groups that a group with this property is necessarily cyclic: a finite abelian group is isomorphic to $\mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_r$ for its invariant factors $d_1 \mid d_2 \mid \cdots \mid d_r$, and would have two distinct subgroups of order d_1 if $r > 1$; hence $r = 1$, and the group is cyclic. Consequently: the group \mathbb{F}_p^* of units of the finite field \mathbb{F}_p is cyclic of order $p - 1$.

1
Remark. In the elementary theory of numbers, this result is referred to as the existence of a primitive element mod p. The proof shows, more generally, that the group of units of any finite field is cyclic. One application of this result is that the group $\text{GL}_2(\mathbb{F}_p)$ contains an element of order $p^2 - 1$: one may construct a field F with p^2 elements, whose group F^\times of units must be cyclic of order $p^2 - 1$ by the above argument; let $\alpha \in F^\times$ be a generator. Then F can be considered as a two-dimensional \mathbb{F}_p-vector space, and the \mathbb{F}_p-automorphism $F \to F, x \mapsto \alpha x$ becomes an invertible linear transformation of order $p^2 - 1$.

3. Prove that if $n = pq$ is a product of primes satisfying $p \mid q - 1$, then there is a unique nonabelian group of order n up to isomorphism.

A nonabelian group of order pq is constructed as a semidirect product of the cyclic groups \mathbb{Z}/q and \mathbb{Z}/p relative to any nontrivial homomorphism $\mathbb{Z}/p \to \text{Aut}(\mathbb{Z}/q) = (\mathbb{Z}/q)^* \cong \mathbb{Z}/(q-1)$ (which exists, since $p \mid q - 1$ implies that $\text{Aut}(\mathbb{Z}/q) \cong \mathbb{Z}/(q-1)$ has an element of order p).

Suppose G is any nonabelian group of order pq. For at least two reasons, G must have a normal subgroup of order q. The first reason are the Sylow theorems, which give that the number of order-q subgroups of G divides p and is $\equiv 1 \mod q$; as $q > p$ and p is prime, this number is 1, and the unique q-Sylow subgroup H of G is normal. The second reason is that, in an arbitrary finite group G, all subgroups of index the minimal prime dividing $|G|$ are normal.

From Problem 2 above, the group $\text{Aut} H \cong \mathbb{Z}/(q-1)$ is cyclic of order $q - 1$, and hence has a unique subgroup of order p; fix a generator σ for this group (that is, σ is a choice of an element of order p). Let A be a p-Sylow subgroup of G (that is, a subgroup of order p). Then A, H have complementary orders and intersect trivially; it follows that they are complementary subgroups, and since H is normal, it follows by Theorem 10.13 from the Course Notes that $G = H \rtimes A$ is a semidirect product for the action of A on H by conjugation. The latter action is nontrivial since G is nonabelian, and determines a nontrivial homomorphism $A \to \text{Aut} H$, whose is therefore injective with image the unique order-p subgroup $\langle \sigma \rangle$ of $\text{Aut} H$. There is a unique isomorphism $\mathbb{Z}/p \cong A$ whose composition with $A \to \text{Aut} H$ maps $1 + p\mathbb{Z}$ to σ, and this completely determines the composition $\mathbb{Z}/p \to \text{Aut} H$. Thus G is isomorphic to the semidirect product constructed in the opening paragraph.

Remark. At this point, we have a complete classification of groups of
order composed of at most two prime factors. For order p^2, there are two groups, both abelian. For order pq with $p \nmid q - 1$, there is a unique group, the cyclic group of that order. For order pq with $p \mid q - 1$, there are exactly two groups, one cyclic and one nonabelian. This simple classification can extended to order pqr, where the groups are still described by the simple arithmetic conditions of Sylow theory; but it breaks down for four or more prime factors: A_5, for example, is a simple group of order $60 = 2^3 \cdot 3 \cdot 5$.

4. Prove that $\mathbb{Z}/a \times \mathbb{Z}/b$ is isomorphic to $\mathbb{Z}/c \times \mathbb{Z}/(ab/c)$, where $c = \gcd(a, b)$.

Using this, prove any product of finite cyclic groups is isomorphic to a unique product of the form $\mathbb{Z}/a_1 \times \cdots \times \mathbb{Z}/a_n$, where $a_1 \mid a_2 \mid \cdots \mid a_n$.

The special case with $\gcd(a, b) = 1$ is called the Chinese remainder theorem: the map $\mathbb{Z}/(ab) \to \mathbb{Z}/a \times \mathbb{Z}/b, \quad x \mapsto (x \mod a, x \mod b)$ is an isomorphism. This follows from the pigeonhole principle upon verifying injectivity, which is immediate: when $\gcd(a, b) = 1$, $a \mid x$ and $b \mid x$ imply $ab \mid x$. For the general case, write $c = ra - bs$ with $r, s \in \mathbb{Z}$, and define similarly the map $\mathbb{Z}/c \times \mathbb{Z}/(ab/c) \to \mathbb{Z}/a \times \mathbb{Z}/b, \quad (y, x) \mapsto \left(\frac{ra}{c}y + x \mod a, \frac{ab}{c}y + x \mod b\right)$. This map is a well-defined homomorphism as $y \mod c$ determines $\frac{a}{c}y \mod a$ and $\frac{b}{c}y \mod b$, and it is sufficient, by the pigeonhole principle, to verify its injectivity: $a \mid \frac{ra}{c}y + x$ and $b \mid \frac{ab}{c}y + x$ imply $c \mid y, \frac{ab}{c} \mid x$. Since $c \mid a$ and $c \mid b$, it is clear that $\frac{c}{a}y + x) - \left(\frac{ra}{c}y + x\right) = ra-bsy = y$, as required. It then follows that $a \mid x$ and $b \mid x$, which implies that the least common multiple $\frac{ab}{c} \mid x$. Hence our map $\mathbb{Z}/c \times \mathbb{Z}/(ab/c) \to \mathbb{Z}/a \times \mathbb{Z}/b$ is an isomorphism.

It then follows by an easy induction that every product of finite cyclic groups $\mathbb{Z}/b_1 \times \cdots \times \mathbb{Z}/b_n$ is isomorphic to a product of the form $\mathbb{Z}/a_1 \times \cdots \times \mathbb{Z}/a_n$ with $a_1 \mid \cdots \mid a_n$. In detail, apply induction on the number of pairs $\{b_i, b_j\}$ with neither $b_i \mid b_j$ nor $b_j \mid b_i$. The induction is vacuous; for the induction step, consider such a pair $\{i, j\}$; then $G = \mathbb{Z}/b_i \times \mathbb{Z}/b_j \times A$, where A is a group for which the induction hypothesis applies. By the first part, $\mathbb{Z}/b_i \times \mathbb{Z}/b_j \cong \mathbb{Z}/c \times \mathbb{Z}/m$, where $c := \gcd(b_i, b_j), m := \text{lcm}(b_i, b_j)$. Then $G \cong \mathbb{Z}/c \times \mathbb{Z}/m \times A$; and it suffices to justify that the right-hand side satisfies the induction hypothesis. In what follows, $k \in \{1, \ldots, r\}$ denotes an index not in $\{i, j\}$. A pair $\{c, b_k\}$ with $c \nmid b_k$ and $b_k \nmid c$ induces either the pair $\{b_k, b_j\}$ with $b_k \nmid b_j$ or the pair $\{b_j, b_k\}$ with $b_j \nmid b_k$. A pair $\{m, b_k\}$ with $b_k \nmid m$ induces either the pair $\{b_i, b_k\}$ with $b_k \nmid b_i$ or the pair $\{b_j, b_k\}$ with $b_k \nmid b_j$. Since the pair $\{b_i, b_j\}$ has been replaced by the pair $\{c, m\}$ satisfying $c \mid m$, it follows from the induction hypothesis.
that $G \cong \mathbb{Z}/c \times \mathbb{Z}/m \times A$ is of the required form.

5. Prove that the statement every abelian group of order n is cyclic holds if and only if n is the product of distinct primes.

That n must be square-free follows from the existence of the noncyclic abelian group $\mathbb{Z}/p \times \mathbb{Z}/p$ of order p^2. Conversely, if n is square-free and $G \cong \mathbb{Z}/d_1 \times \cdots \times \mathbb{Z}/d_r$ an abelian group of order n written in invariant form with $1 < d_1 | \cdots | d_r$, then $n = d_1 \cdots d_r$ forces $r = 1$: else, n would be divisible by d_1^2 and would not be square-free.

6. For which values of n is D_n nilpotent?

Answer: The dihedral group D_n of order $2n$ is nilpotent if and only if n is a power of 2. If n is a power of 2, then D_n is a 2-group, in particular nilpotent. If n is odd, then D_n has trivial center and hence can not be nilpotent. Finally, if n is even and $r \in D_n$ is a rotation of order n, then the center $Z(D_n)$ is the group $\{1, r^{n/2}\}$, and the quotient group $D_n/Z(D_n)$ is isomorphic to $D_{n/2}$; the assertion follows.

7. Let $N \subset \text{GL}_n(\mathbb{R})$ be the group of upper-triangular matrices with 1’s along the diagonal. Prove that N is a nilpotent group (i) for $n = 3$; (ii) for $n = 4$.

(i) The first step is to find the center of N; as shows an immediate calculation, it consists of the matrices of the form

$$
\begin{pmatrix}
1 & * \\
1 & 1 \\
1 & 1
\end{pmatrix},
$$

with the only possible nonzero off-diagonal entry in the upper-right corner. The quotient $N/Z(N)$ is isomorphic to \mathbb{Z}^2, which is abelian; thus, N is nilpotent.

(ii) Similarly, the center of N is isomorphic to \mathbb{Z}, consisting of the matrices

$$
\begin{pmatrix}
1 & * \\
1 & 1 \\
1 & 1
\end{pmatrix}.
$$
The center of the quotient group \(N_1 := N/Z(N) \) consists of classes of matrices containing a representative of the form

\[
\begin{pmatrix}
1 & * \\
1 & 1 \\
1 & 1
\end{pmatrix}.
\]

The quotient \(N_1/Z(N_1) \) is then isomorphic to \(\mathbb{Z}^3 \), which is abelian; consequently, \(N_1 \), and hence \(N \), is nilpotent.

8. Find all the groups of order 8, up to isomorphism.

There are five groups of order 8 (just as there are five groups of any cube-of-prime order \(p^3 \)), three of which are abelian (those are \(\mathbb{Z}/8, \mathbb{Z}/4 \times \mathbb{Z}/2, \) and \(\mathbb{Z}/2 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \)), and two nonabelian (the dihedral group \(D_4 \) and the group of quaternions \(Q \)). To show that these exhaust all possibilities, consider an arbitrary nonabelian group \(G \) of order 8. Then \(G \) must have an element of order 4: else, all elements would be of order 1 or 2, and a group with this property is abelian. Letting \(x \in G \) for an element of order 4, note that the cyclic subgroup \(\langle x \rangle \) has index 2 and is hence normal. Take any \(y \in G - \langle x \rangle \); then \(\langle x, y \rangle = G \), since an index-2 subgroup is always maximal. Then \([x, y] \neq 1 \), because \(G \) is nonabelian. Thus \(yxy^{-1} \in \langle x \rangle = \{1, x, x^2, x^{-1}\} \), which has order 4, cannot equal \(x \) and must therefore equal \(x^{-1} \): \(yxy^{-1} = x^{-1} \). On the other hand, since \(y^2 \in \langle x \rangle \) has order 1 or 2, there are two possibilities: either \(y^2 = 1 \), or \(y^2 = x^2 \). We obtain that either

\[
G = \langle x, y \mid x^4 = y^2 = 1, yxy^{-1} = x^{-1} \rangle,
\]

and \(G \) is isomorphic to the symmetry group \(D_4 \) of the square by sending \(x \) to a rotation and \(y \) to a reflection; or

\[
G = \langle x, y \mid x^4 = 1, y^2 = x^2, yx = x^2 \cdot (xy) \rangle,
\]

which is isomorphic to the quaternion group via \(x \mapsto i, y \mapsto j, xy \mapsto k \).

9. Let \(N \subset \text{GL}_3(\mathbb{F}_2) \) be the group of invertible upper-triangular matrices. Is \(N \) isomorphic to \(D_4 \) or to the quaternion group \(Q \)?
Since N is a nonabelian group of order 8, it must be isomorphic to either D_4 or Q. Since it contains the two different elements

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

of order 2, it cannot be isomorphic to Q (which has -1 as its unique order-2 element). Therefore, N is isomorphic to D_4.

10. (i) Show that the group of affine symmetries $g(x) = Ax + b$ of the finite plane F_2^2 is isomorphic to S_4. (ii) Show that S_4 is the semidirect product of a subgroup of order 4 and a subgroup of order 6.

(i) The finite plane F_2^2 has four elements, $e := (0,0), p := (0,1), q := (1,0), r := (1,1)$. Let G be the its group of affine symmetries. The action of G on F_2^2 determines a homomorphism $\phi : G \to S_4$ that we wish to show is an isomorphism; for this it suffices to show that ϕ is injective and $|G| = 24$. Injectivity means that $Ax + b = x$ identically on $x \in F_2^2$ implies $A = I$ and $b = 0$; this yields first of all $b = 0$, and the condition then rewrites $(A - I)x = 0$ for all $x \in F_2^2$, clearly yielding $A - I = 0$. It remains to show $|G| = 24$, which follows from the semidirect product decomposition $G \cong \text{GL}_2(F_2) \ltimes F_2^2$ analogous to the semidirect product decomposition $\text{Isom}(\mathbb{R}^2) \cong O_2(\mathbb{R}) \ltimes \mathbb{R}^2$: since $|\text{GL}_2(F_2)| = (2^2 - 1) \cdot (2^2 - 2) = 6$, this semidirect product implies $|G| = 6 \cdot 4 = 24$, as required.

(ii) It follows from part (i) that $S_4 \cong \text{GL}_2(F_2) \ltimes F_2^2$ is a semidirect product of a normal subgroup of order 4 and a subgroup of order 6.