Problem 1 (RA)
Let X be a subset of $[0, 1]$ with the following two properties:
- For any real number, r, there is $x \in X$ such that $r - x$ is rational.
- For any two distinct $x, y \in X$, the number $x - y$ is irrational.
Prove that X is not Lebesgue-measurable.

Problem 2 (DG)
Use (x, y, z) for the Euclidean coordinate functions on \mathbb{R}^3 and let a denote the 1-form

$$a = dz + \frac{1}{2} (x \, dy - y \, dx).$$

a) Compute da and $a \wedge da$.
b) Prove that the kernel of a defines a smooth, 2-dimensional vector subbundle in $T\mathbb{R}^3$.
c) Suppose that $B \subset \mathbb{R}^3$ is an open ball and that u and w are pointwise linearly independent vector fields in the kernel of a on B. Prove that the commutator of u and v is nowhere in the kernel of a.

Problem 3 (CA)
How many roots of the polynomial $P(z) = z^4 - 6z + 3$ occur where $|z| < 2$?
Problem 4 (T)
Let X_1 and X_2 denote distinct copies of T^2, so each is $S^1 \times S^1$ with S^1 denoting the circle. Define the space X to be the quotient of the disjoint union of X_1 and X_2 by the equivalence relation whereby any point of the form $(z, 1)$ in X_1 is identified with the corresponding $(z, 1)$ in X_2. Compute the cohomology ring of the space X. (Thus, compute $H^*(X; \mathbb{Z})$ and determine its cup-product structure.)

Problem 5 (AG)
Let X denote the affine curve in \mathbb{A}^2 where $y^2 - x^3 + x^2 = 0$. Prove that X is singular and that there is a birational morphism from \mathbb{A}^1 onto X.

Problem 6 (AN)
Let G_1, \ldots, G_n denote finite groups. For each $m \in \{1, \ldots, n\}$, let $\rho_m: G_m \rightarrow \text{GL}(V_m)$ denote a finite dimensional, complex representation of G_m. Use χ_m to denote the character of ρ_m. Set $G = G_1 \times \cdots \times G_n$ and $V = V_1 \otimes \cdots \otimes V_n$.

a) Define $\rho: G \rightarrow \text{GL}(V)$ by the rule $\rho(g_1, \ldots, g_n) = \rho_1(g_1) \otimes \cdots \otimes \rho_n(g_n)$. Write the character of ρ in terms of the characters $\{\chi_m\}_{1 \leq m \leq n}$.

b) Prove that (V, ρ) is an irreducible representation of G if and only if, for all m, each (V_m, ρ_m) is an irreducible representation of G_m.
Problem 1 (RA)

a) Let A_1, A_2, \ldots be a countable collection of events in a probability space; and let A_1^c, A_2^c, \ldots denote their respective complements. Prove the following assertion: If A_1, A_2, \ldots are mutually independent, then A_1^c, A_2^c, \ldots are also mutually independent.

(A collection of events $\{A_n\}_{n=1,2,\ldots}$ is said to be mutually independent when any member is independent of the mutual intersection of any finite subcollection of the other events.)

b) Let A_1, A_2, \ldots denote a sequence of mutually independent events in a probability space with the property that the sum of their probabilities is infinite. Prove that with probability one, the event A_n must occur for infinitely many values of the index n.

Problem 2 (DG)

The Euclidean metric on \mathbb{R}^2 can be written using the standard rectilinear coordinates (x,y) as $dx \otimes dx + dy \otimes dy$. Let u denote a smooth function on \mathbb{R}^2 and let g denote the metric $e^{2u} (dx \otimes dx + dy \otimes dy)$. Let ∇ denote the corresponding Levi-Civita covariant derivative for the metric g, acting on sections of $T^*\mathbb{R}^2$.

a) Write $\nabla(dx)$ and $\nabla(dy)$ in terms of u and its derivatives.

b) Write the scalar curvature of the metric g in terms of u and its first and second derivatives.

Problem 3 (CA)
Supposing that \(a \) is a positive number, evaluate the integral \(\int_0^\infty \frac{\cos^2(x)}{x^2 + a^2} \, dx \) using the method of residues.

Problem 4 (T)

Let \(X = T^2 \lor S^2 \) which is the join of the torus \(T^2 \) (which is \(S^1 \times S^1 \)) and the 2-sphere \(S^2 \).

a) Describe the universal covering space of \(X \).

b) Compute \(\pi_1(X) \).

c) Compute \(\pi_2(X) \).

Problem 5 (AG)

Show that for any genus 2 curve, \(C \), there is a divisor on \(C \) which has degree greater than zero, but is not linearly equivalent to an effective divisor. (Hint: The Riemann-Roch formula states that \(h^0(C, \mathcal{L}) - h^0(C, K_C \otimes \mathcal{L}) = \deg(\mathcal{L}) + 1 - g(C) \) for a line bundle \(\mathcal{L} \) on a curve \(C \). Here, \(K_C \) denotes the canonical bundle of \(C \) and \(g(C) \) denotes the genus of \(C \).)

Problem 6 (AN)

Let \(k \) denote a finite field of \(2^f \) elements for some positive integer \(f \).

a) Prove that the map from \(k \) to itself given by \(x \mapsto x^2 + x \) is a homomorphism of additive groups. Assuming this, then prove that exactly \(2^{f-1} \) elements of \(k \) can be written as \(x^2 + x \) for some \(x \in k \).

b) Prove that any given \(a \in k \) can be written as \(x^2 + x \) for some \(x \in k \) if and only if \(\sum_{i=0}^{f-1} a^i = 0 \).
Problem 1 (RA)
For $f : \mathbb{R} \to \mathbb{R}$ a Lebesgue measurable function, let $\|f\|$ denote the norm,

$$\|f\| = \int |f| \, d\mu$$

where $d\mu$ is the Lebesgue measure. Let $L^1(\mathbb{R})$ denote the vector space (over \mathbb{R}) of Lebesgue measurable functions $f : \mathbb{R} \to \mathbb{R}$ with $\|f\| < \infty$ (we identify functions that are equal almost everywhere). If f, g are functions in $L^1(\mathbb{R})$, define their convolution (an \mathbb{R}-valued function on \mathbb{R} denoted by $f \ast g$) by the following rule:

$$(f \ast g)(x) = \int_{\mathbb{R}} f(x - t) g(t) \, dt \quad \text{if} \quad \int_{\mathbb{R}} |f(x - t)| |g(t)| \, dt \text{ is finite; and } (f \ast g)(x) = 0 \text{ otherwise.}$$

Prove the following: There is no function $\epsilon \in L^1(\mathbb{R})$ such that $\epsilon \ast f = f$ for all $f \in L^1(\mathbb{R})$.

Here are two hints: First, keep in mind that a function is Lebesgue measurable when, for any real number E, the set of points in \mathbb{R} where the function is less than E is Lebesgue measurable. Second, consider the sequence $\{f_n\}_{n=1,2,\ldots}$ of functions on \mathbb{R} which is defined as follows: For any given positive integer n, set $f_n(x) = 1$ if $-\frac{1}{n} \leq x \leq \frac{1}{n}$, and set $f_n(x) = 0$ otherwise.

Problem 2 (DG)
View the 4-dimensional sphere (denoted by S^4) as the 1-point compactification of \mathbb{R}^4, thus $\mathbb{R}^4 \cup \infty$. A complex, rank 2 vector bundle over S^4 (to be denoted by E) can be defined as follows: Cover the sphere S^4 by the two open sets \mathbb{R}^4 and $(\mathbb{R}^4 - 0) \cup \infty$. A map (to be denoted by ϱ) from their intersection (which is $\mathbb{R}^4 - 0$) to the group $SU(2)$ (the group of 2×2 unitary matrices with determinant 1) is defined by first writing the Euclidean coordinates of any given $x \in \mathbb{R}^4$ as (x_1, x_2, x_3, x_4) and using these coordinate functions to define $\varrho(x)$ for $x \in \mathbb{R}^4 - 0$ by
The vector bundle \mathcal{E} is the quotient of the product \mathbb{C}^2 bundle over the \mathbb{R}^4 part of S^4, and the product \mathbb{C}^2 bundle over the complement in S^4 of $0 \in \mathbb{R}^4$ by the equivalence relation that identifies pairs $(x, s_0) \in \mathbb{R}^4 \times \mathbb{C}^2$ and $(y, s_1) \in ((\mathbb{R}^4 - 0) \cup \infty)$ when x and y are in $\mathbb{R}^4 - 0$ and $x = y$ and $s_1 = g(x)s_0$. (The projection map from \mathcal{E} to S^4 sends the equivalence class of any (x, s) for $x \in \mathbb{R}^4$ to x; and it sends the equivalence class of (∞, s) to ∞.)

a) Write a connection on this vector bundle.

b) Compute the curvature 2-form of your connection.

Problem 3 (CA)

a) Prove that $\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2}$ defines a meromorphic function on \mathbb{C} with poles only at the points in \mathbb{Z}.

b) Prove that $\sum_{n \in \mathbb{Z}} \frac{1}{(z-n)^2} = \frac{\pi^2}{\sin^2(\pi z)}$.

Problem 4 (T)

a) Construct a connected, topological space X such that $\pi_1(X)$ is generated by two elements, denoted by a and b, subject to the relations $a^3 = 1$ and $b^3 = 1$.

b) For which $q \geq 1$, is $H_q(X; \mathbb{Z})$ independent of your choice of X?
Problem 5 (AG)
The twisted cubic (to be denoted by X) is the image of the map from \mathbb{P}^1 to \mathbb{P}^3 defined using homogeneous coordinates by the rule $[s:\!t] \to [s^3 : s^2t : st^2 : t^3]$. It is also the locus in \mathbb{P}^3 where the three polynomials $\{z_0z_3 - z_1z_2, z_0z_2 - z_1^2, z_1z_3 - z_2^2\}$ are simultaneously zero. Prove that the Hilbert polynomial of the twisted cubic, \mathcal{P}_X, obeys $\mathcal{P}_X(n) = 3n+1$.

Problem 6 (AN)
Prove that there is a unique positive integer $n \leq 10^{2017}$ such that the last 2017 digits of n^3 are 0000 \ldots 00002017 (with all 2005 digits represented by \ldots being zeros as well).