1. (AT)
 (a) Let X and Y be compact, oriented manifolds of the same dimension n. Define the degree of a continuous map $f : X \to Y$.
 (b) Let $f : \mathbb{C}P^3 \to \mathbb{C}P^3$ be any continuous map. Show that the degree of f is of the form m^3 for some integer m.
 (c) Show that conversely for any $m \in \mathbb{Z}$ there is a continuous map $f : \mathbb{C}P^3 \to \mathbb{C}P^3$ of degree m^3.

2. (A) Let G be a group.
 (a) Prove that, if V and W are irreducible G-representations defined over a field \mathbb{F}, then a G-homomorphism $f : V \to W$ is either zero or an isomorphism.
 (b) Let $G = D_8$ be the dihedral group with 8 elements. What are the dimensions of its irreducible representations over \mathbb{C}?

3. (CA) Let f_n be a sequence of analytic functions on the unit disk $\Delta \subset \mathbb{C}$ such that $f_n \to f$ uniformly on compact sets and such that f is not identically zero. Prove that $f(0) = 0$ if and only if there is a sequence $z_n \to 0$ such that $f_n(z_n) = 0$ for n large enough.

4. (AG) Let K be an algebraically closed field of characteristic 0, and let \mathbb{P}^n be the projective space of homogeneous polynomials of degree n in two variables over K. Let $X \subset \mathbb{P}^n$ be the locus of n^{th} powers of linear forms, and let $Y \subset \mathbb{P}^n$ be the locus of polynomials with a multiple root (that is, a repeated factor).
 (a) Show that X and $Y \subset \mathbb{P}^n$ are closed subvarieties.
 (b) What is the degree of X?
 (c) What is the degree of Y?
5. (DG) Given a smooth function $f : \mathbb{R}^{n-1} \to \mathbb{R}$, define $F : \mathbb{R}^n \to \mathbb{R}$ by

$$F(x_1, \ldots, x_n) := f(x_1, \ldots, x_{n-1}) - x_n$$

and consider the preimage $X_f = F^{-1}(0) \subset \mathbb{R}^n$.

(a) Prove that X_f is a smooth manifold which is diffeomorphic to \mathbb{R}^{n-1}.

(b) Consider the two examples X_f and $X_g \subset \mathbb{R}^3$ with $f(x_1, x_2) = x_1^2 + x_2^2$ and $g(x_1, x_2) = x_1^2 - x_2^2$. Compute their normal vectors at every point $(x_1, x_2, x_3) \in X_f$ and $(x_1, x_2, x_3) \in X_g$.

6. (RA) Let $K \subset \mathbb{R}^n$ be a compact set. Show that for any measurable function $f : K \to \mathbb{C}$, it holds that

$$\lim_{p \to \infty} \|f\|_{L^p(K)} = \|f\|_{L^\infty(K)}.$$

(Recall that $\|f\|_{L^p(K)} = \left(\int_K |f|^p \, dx\right)^{1/p}$ and that $\|f\|_{L^\infty(K)}$ is the essential supremum of f, i.e., the smallest upper bound if the behavior of f on null sets is ignored.)
1. (AG) Let $C \subset \mathbb{P}^2$ be a smooth plane curve of degree d.

(a) Let K_C be the canonical bundle of C. For what integer n is it the case that $K_C \cong \mathcal{O}_C(n)$?

(b) Prove that if $d \geq 4$ then C is not hyperelliptic.

(c) Prove that if $d \geq 5$ then C is not trigonal (that is, expressible as a 3-sheeted cover of \mathbb{P}^1).

2. (CA) (The 1/4 theorem). Let S denote the class of functions that are analytic on the disk and one-to-one with $f(0) = 0$ and $f'(0) = 1$.

(a) Prove that if $f \in S$ and w is not in the range of f then

$$g(z) = \frac{wf(z)}{(w - f(z))}$$

is also in S.

(b) Show that for any $f \in S$, the image of f contains the ball of radius 1/4 around the origin. You may use the elementary result (Bieberbach) that if $f(z) = z + \sum_{k \geq 2} a_k z^k$ in S then $|a_2| \leq 2$.

3. (A) Find a polynomial $f \in \mathbb{Q}[x]$ whose Galois group (over \mathbb{Q}) is D_8, the dihedral group of order 8.

4. (RA)

(a) Let $a_k \geq 0$ be a monotone increasing sequence with $a_k \to \infty$, and consider the ellipse,

$$E(a_k) = \{v \in \ell^2(\mathbb{Z}) : \sum a_kv_k^2 \leq 1\}.$$

Show that $E(a_n)$ is a compact subset of $\ell^2(\mathbb{Z})$.
(b) Let \(\mathbb{T} \) denote the one-dimensional torus; that is, \(\mathbb{R}/2\pi\mathbb{Z} \), or \([0, 2\pi]\) with the ends identified. Recall that the space \(H^1(\mathbb{T}) \) is the closure of \(C^\infty(\mathbb{T}) \) in the norm

\[
\|f\|_{H^1(\mathbb{T})} = \sqrt{\|f\|_{L^2(\mathbb{T})}^2 + \|\frac{d}{dx}f\|_{L^2(\mathbb{T})}^2}.
\]

Use part (a) to conclude that the inclusion \(i : H^1(\mathbb{T}) \hookrightarrow L^2(\mathbb{T}) \) is a compact operator.

5. (AT) Consider the following topological spaces:

\[A = S^1 \times S^1 \quad \quad B = S^1 \vee S^1 \vee S^2. \]

(a) Compute the fundamental group of each space.
(b) Compute the integral cohomology ring of each space.
(c) Show that \(B \) is not homotopy equivalent to any compact orientable manifold.

6. (DG) Consider the set

\[
G := \left\{ \begin{pmatrix} x & 0 & 0 \\ 0 & x & y \\ 0 & 0 & 1 \end{pmatrix} : x \in \mathbb{R}^+, \ y \in \mathbb{R} \right\},
\]

and equip it with a smooth structure via the global chart that sends \((x, y) \in \mathbb{R}^+ \times \mathbb{R}\) to the corresponding element of \(G \).

(a) Show that \(G \) is a Lie subgroup of the Lie group \(GL(\mathbb{R}, 3) \).
(b) Prove that the set

\[
\left\{ x \frac{\partial}{\partial x}, x \frac{\partial}{\partial y} \right\}
\]

forms a basis of left-invariant vector fields on \(G \).
(c) Find the structure constants of the Lie algebra \(g \) of \(G \) with respect to the basis in (b).
1. (AT) Let $p : E \to B$ be a k-fold covering space, and suppose that the Euler characteristic $\chi(E)$ is defined, nonzero, and relatively prime to k. Show that any CW decomposition of B has infinitely many cells.

2. (RA) Let W be Gumbel distributed, that is $P(W \leq x) = e^{-e^{-x}}$. Let X_i be independent and identically distributed Exponential random variables with mean 1; that is, X_i are independent, with $P(X_i \leq x) = \exp(- \max x, 0)$.

Let
\[M_n = \max_{i \leq n} X_i. \]

Show that there are deterministic sequences a_n, b_n such that
\[\frac{M_n - b_n}{a_n} \to W \]
in law; that is, such that for any continuous bounded function F,
\[\mathbb{E} F\left(\frac{M_n - b_n}{a_n} \right) \to \mathbb{E} F(W). \]

3. (DG) Consider \mathbb{R}^2 as a Riemannian manifold equipped with the metric
\[g = e^x dx^2 + dy^2. \]

(i) Compute the Christoffel symbols of the Levi-Civita connection for g.

(ii) Show that the geodesics are described by the curves $x(t) = 2 \log(At + B)$ and $y(t) = Ct + D$, for appropriate constants A, B, C, D.

(iii) Let $\gamma : \mathbb{R}_+ \to \mathbb{R}^2$, $\gamma(t) = (t, t)$. Compute the parallel transport of the vector $(1, 2)$ along the curve γ.

(iv) Are there two vector fields X, Y parallel to the curve γ, such that $g(X(t), Y(t))$ is non-constant?
4. (A) Let G be a group of order 78.

 (a) Show that G contains a normal subgroup of index 6.

 (b) Show by example that G may contain a subgroup of index 13 that is not normal.

5. (AG) Let K be an algebraically closed field of characteristic 0, and consider the curve $C \subset \mathbb{A}^3$ over K given as the image of the map

$$
\phi : \mathbb{A}^1 \rightarrow \mathbb{A}^3
$$

$$
t \mapsto (t^3, t^4, t^5).
$$

Show that no neighborhood of the point $\phi(0) = (0, 0, 0) \in C$ can be embedded in \mathbb{A}^2.

6. (CA) Let $f(z)$ be an entire function such that

 a) $f(z)$ vanishes at all points $z = n, n \in \mathbb{Z}$;

 b) $|f(z)| \leq e^{\pi |\text{Im} z|}$ for all $z \in \mathbb{C}$.

Prove that $f(z) = c \sin \pi z$, with $c \in \mathbb{C}$, $|c| \leq 1$.