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1. (A) The integer 8871870642308873326043363 is the 13th power of an integer
n. Find n.

Solution. Counting digits, we see that n < 100, so is determined by its
residue class (mod 99).Both (mod 11) and (mod 9) raising to the 13th power
is a bijection. After a little computation we find that n ≡ 2(mod 9) and
n ≡ 6(mod 11). This implies, by the Chinese remainder theorem that n ≡
83(mod 99). Hence n = 83.

2. (AG) Let C ⊂ P2 be a smooth plane curve of degree 4.

(a) Describe the canonical bundle of C in terms of line bundles on P2. What
are the effective canonical divisors on C?

(b) What is the genus of C? Explain how you obtain this formula.

(c) Prove that C is not hyperelliptic.

Solution: By the adjunction formula, the canonical divisor class of a curve of
degree d is KC = OC(d − 3), that is, plane curves of degree d − 3 cut out
canonical divisors on C. It follows that effective canonical divisors on C are
the intersection with lines in the plane, so have degree 4. Since the degree of
the canonical class is 2g − 2, the genus g = 3. Furthermore, any two points
p, q ∈ C impose independent conditions on the canonical series |KC |; that is,
h0(KC(−p− q)) = g−2, so by the Riemann-Roch formula h0(OC(p+ q)) = 1,
i.e., C is not hyperelliptic.

3. (DG) Let M be a C∞ manifold, TM its tangent bundle, and TCM = C⊗RTM
the complexified tangent bundle. An almost complex structure on M is a C∞

bundle map J : TM → TM such that J2 = −1.

(a) Show that an almost complex structure naturally determines, and is de-
termined by, each of the following two structures:
i) the structure of a complex C∞ vector bundle – i.e., with fibres that
are complex vector spaces – on TM compatible with its real structure.
ii) a C∞ direct sum decomposition TCM = T 1,0M ⊕ T 0,1M with T 0,1M
= complex conjugate of T 1,0M .

(b) Show that every almost complex manifold is orientable.



(c) If S is a C∞, orientable, 2-dimensional, Riemannian manifold, construct
a natural almost complex structure on S in terms of its Riemannian struc-
ture, but one that depends only on the underlying conformal structure
of S.

(d) Does the almost complex structure constructed in (c) determine the con-
formal structure of S? You need NOT give a detailed answer to this
question; a heuristic one- or two-sentence answer suffices.

Solution: The correspondence between J and the structure of complex vector
bundle on TM is given by J ↔ multiplication by i ; this is well defined and
bijective because both are C∞ bundle maps, defined over R, of square −1.
For the same reason, J ↔ bijectively corresponds to decompositions TCM =
T 1,0M ⊕ T 0,1 with T 0,1M = complex conjugate of T 1,0M , via

T 1,0 = i− eigenspace of J , and T 0,1 = (−i)− eigenspace of J ,

on each fiber. That is the assertion (a). To establish (b), let {s1, s2, . . . , sn}
denote a local C∞ frame of T 1,0M . The complex conjugate frame is then a
frame of T 0,1M . it follows that

is a local C∞ generator of ∧top TCM . It is defined over R, as can be checked
by an easy calculation, and hence can be regarded as a local C∞ generator of
∧top TM . Now let {t1, t2, . . . , tn} be another local C∞ frame of T 1,0M . On
the overlap of the domains, the two frames are related by a C∞ matrix valued
function (ai,j). But then

i−n t1 ∧ · · · ∧ tn ∧ t1 ∧ . . . tn = |det(ai,j)|2 i−n s1 ∧ · · · ∧ sn ∧ s1 ∧ . . . sn ,

so any two local frames induce the same orientation on M . This proves (b).
On a 2-dimensional Riemannian manifold S one has the notion of an angle
between any two tangent vectors at a point, which depends only on the un-
derlying conformal structure, and if S is oriented, one even has the notion
of a directed angle. In this situation it makes sense to define J = rotation
through an angle π/2. This is a C∞ bundle map because the metric is smooth,
and J2 = −1 by definition. That implies (c). Finally, for (d), note that on
the tangent spaces of a Riemannian surface one can make sense of a rotation
though any angle if one knows the effect of a rotation about the angle π/2.

4. (RA) In this problem V denotes a Banach space over R or C.

(a) Show that any finite dimensional subspace U0 ⊂ V is closed in V .

(b) Now let U1 ⊂ V a closed subspace, and U2 ⊂ V a finite dimensional
subspace. Show that U1 + U2 is closed in V .



Solution: For definiteness suppose V is a Banach space over R. Let {uk | 1 ≤
k ≤ n} be a basis of U0, and use this basis to identify U0

∼= Rn. Then, for
u =

∑
k ak uk ∈ U0 ⊂ V ,

‖u‖ ≤
∑

0≤k≤n |ak| ‖uk‖ ≤ C max0≤k≤n |ak| , with C = max0≤k≤n ‖uk‖ .

It follows that Rn ∼= U0 ↪→ V is bounded with respect to the sup norm on Rn
(and hence with respect to any other Banach norm on Rn ). Now let {vm} be
a convergent sequence in V , all of whose terms lie in the subspace U0. But
then the inverse image of this sequence in Rn must be bounded, and has a
convergent subsequence. Its limit, viewed as a vector in V , must coincide
with the original limit, of course. This implies (a). In establishing (b) we
can replace U2 by a linear complement, in U2, of U1 ∩ U2. In other words, we
may assume U1 ∩ U2 = 0. Any convergent sequence {vm} whose terms lie in
U1 + U2 can now be written uniquely as {vm = v′m + v′′m}, with v′m ∈ U1 and
v′′m ∈ U2. Let’s distinguish two cases:
i) The sequence {v′′m} has a bounded subsequence, which by (a) in turn has
a subsequence that converges in U2. But then the corresponding subsequence
of {v′m} must converge, necessarily to a point in the closed subspace U1. It
follows that the limit of the original series must lie in U1 + U2.
ii) ‖v′′m‖ → ∞ asm→∞. Going to an appropriate subsequence of the original
series, we may then assume that v′′m 6= 0 for all m and ‖v′′m‖−1 v′′m → ṽ′′ ∈ U2,
‖ṽ′′‖ = 1. Because of the hypotheses, ‖v′′m‖−1 vm → 0 ∈ V , which now implies
the convergence of ‖v′′m‖−1 v′m to some point ṽ′ in the closed subspace U1. At
this point, we know that

0 = limm→∞ ‖v′′m‖−1 vm
= limm→∞ ‖v′′m‖−1 v′m + limm→∞ ‖v′′m‖−1 v′′m = ṽ′ + ṽ′′ .

That is a contradiction because 0 6= ṽ′′ = −ṽ′ ∈ U1 ∩ U2 = 0 .

5. (AT) Consider the following three topological spaces:

A = HP3, B = S4 × S8, C = S4 ∨ S8 ∨ S12.

(HP3 denotes quaternionic projective 3-space.)

(a) Calculate the cohomology groups (with integer coefficients) of all three.

(b) Show that A and B are not homotopy equivalent.

(c) Show that C is not homotopy equivalent to any compact manifold.

Solution:



1. The cohomology rings of the three spaces are as follows:

H∗A = Z[x]/x4, |x| = 4,

H∗B = Z[a, b]/(a2, b2), |a| = 4, |b| = 8,

H∗C = Z{r, s, t}, |r| = 4, |s| = 8, |t| = 12,

with all products zero.

2. The ring structures differ: x · x = x2 6= 0, but a · a = 0.

3. If C were homotopy equivalent to a compact manifold, then it would
enjoy Poincaré duality. In particular, r could be taken to be Poincaré
dual to s and t to be the volume form, so that r ·s = t. However, r ·s = 0
in H∗C.

6. (CA) Let f(z) be a function which is analytic in the unit disc D = {|z| < 1},
and assume that |f(z)| ≤ 1 in D. Also assume that f(z) has at least two fixed
points z1 and z2. Prove that f(z) = z for all z ∈ D.

Solution: First observe that we can find a fractional linear transformation S
mapping D to itself and 0 to z1. Now consider g = S−1 ◦ f ◦ S. The function
g is also analytic on D, and satisfies |g(z)| ≤ 1 on D. One of the fixed points
of g is 0, hence the function h(z) = g(z)/z is analytic; call p the other fixed
point of g. We claim that |h(z)| ≤ 1. Before proving the claim, note that this
implies the desired result, since |h(p)| = 1, hence h is identically 1 on D by
the maximum principle.

To prove the claim, we also use the maximum principle. Fix some small
ε > 0. On {|z| = 1 − ε}, we have |h(z)| = |g(z)|/|z| ≤ 1/(1 − ε), hence
|h(z)| ≤ 1/(1− ε) on {|z| ≤ 1− ε} by the maximum principle. Letting ε tend
to 0 gives |h(z)| ≤ 1 on D, as desired.
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1. (AT) Let CPn = (Cn+1 \ {0})/C∗ be n dimensional complex projective space.

(a) Show that every map f : CP2n → CP2n has a fixed point. (Hint: Use the
ring structure on cohomology.)

(b) For every n ≥ 0, give an example of a map f : CP2n+1 → CP2n+1 without
any fixed points and describe its induced map on cohomology.

Solution: We have H∗(CP2n;Z) = Z[x]/x2n+1 with x in degree 2. The map f
induces a ring endomorphism f∗ given by f∗(x) = kx for some k ∈ Z. Thus,
the trace of f∗ is

Tr(f∗) = 1 +

2n∑
i=1

ki ≡ 1 (mod 2).

In particular, the trace is non-zero and hence f has a fixed point by the
Lefschetz fixed-point theorem.

For the second part we can take the map f : CP2n+1 → CP2n+1 with

f([z0, . . . , z2n+1]) = [−z̄1, z̄0, . . . ,−z̄2n+1, z̄2n]

since f(z) = z implies zj = −|λ|2zj for some λ ∈ C∗ and all 0 ≤ j ≤ 2n+ 1, a
contradiction. Note that f sends the line CP1 = [z0, z1, 0, . . . , 0] ⊂ CP2n+1 to
itself, but with reverse orientation, so f∗(x) = −x.

2. (A) Let A be a commutative ring with unit. Define what it means for A to be
Noetherian. Prove that the ring of continuous functions f : [0, 1] → R (with
pointwise addition and multiplication) is not Noetherian.

Solution: A is Noetherian if it has no sequence of ideals I1, I2, I3, . . . such
that In ⊂ In+1 and In 6= In+1 for each n. If A is the ring of continuous
functions [0, 1] → R then we get a counterexample by taking for In the ideal
of functions f ∈ A such that there exists B ∈ R with |f(x)| ≤ Bx1/n for all
x ∈ [0, 1]. The inclusions are strict because x1/n is in In but not in In+1.
[Alternatively, let In consist of the functions supported on [1/n, 1], or of the
functions vanishing at 1/m for all integers m ≥ n.]

3. (CA) Let S ⊂ C be the open half-disc {x+ iy : y > 0, x2 + y2 < 1}.

(a) Construct a surjective conformal mapping f : S → D, where D is the
open unit disc {z ∈ C : |z| < 1}.



(b) Construct a harmonic function h : S → R such that:
• h(x+ iy)→ 0 as y → 0 from above, for all real x with |x| < 1, and
• h(reiθ)→ 1 as r → 1 from below, for all real θ with 0 < |x| < π.

Solution: We construct f as a composition f3 ◦ f2 ◦ f1 of conformal maps
where f1 and f3 are Möbius transformations and f2(z) = z2. Set f1(z) =
(1+z)/(1−z), which transforms D conformally into the first quadrant {(x, y) :
x > 0, y > 0}, taking (−1, 1) to the positive real axis and the semicircular
boundary of S to the imaginary real axis. Thus f2 ◦f1 conformally transforms
D to the upper half-plane {(x, y) : y > 0}, and finally f3(z) := (z − i)/(z + i)
takes the upper half-plane to D, whence f3 ◦f2 ◦f1 is a conformal map S → D
as demanded.

[Of course there are other variations such as f1(z) = (z − 1)/(z + 1) etc., any
of which earns full credit as long as f1 fits into f2 fits into f3 correctly.]

The function h(z) = (2/π)= log f1(z) [a.k.a. h(z) = (1/π)= log f2(f1(z))] is
harmonic because it is the imaginary part of an analytic function, and has the
requisite limiting behavior by our description of f1 in part (i) (the principal
value of log(z) has imaginary part 0 for z = x > 0, and imaginary part π/2
when z = iy with y > 0).

4. (AG) Let Q be the complex quadric surface in P3 defined by the homogeneous
equation x0x3 − x1x2 = 0.

(a) Show that Q is non-singular.

(b) Show that through each point of Q there are exactly two lines which lie
on Q.

(c) Show that Q is rational, but not isomorphic to P2.

Solution: The partial derivatives of F (X,Y, Z,W ) = XY − ZW have no
common zeroes in P3. A line which lies on Q corresponds to an isotropic
plane V in the quadratic space C4, whereas a point on Q corresponds to
an isotropic line L. The quadratic space L⊥/L is split of dimension 2, so
contains exactly two isotropic lines. These give the two isotropic planes V
which contain L.

Q which is the image of the Segre embedding P1×P1 → P3. Since A2 ⊂ P1×P1
as Zariski-dense subset, X is rational. To see that X � P2 one can use
Pic(P1 × P1) = Z2 � Z = Pic(P2).

5. (DG) Let Ω be the 2-form on R3 − {0} defined by

Ω =
1

x2 + y2 + z2
(x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy).

(a) Prove that Ω is closed.



(b) Let f : R3−{0} → S2 be the map which sends (x, y, z) to ( 1
x2+y2+z2

)1/2(x, y, z).

Show that Ω is the pull-back via f of a 2-form on S2.

(c) Prove that Ω is not exact.

Solution: Introduce spherical coordinates (r, θ, φ) by writing x = r sin(θ) cos(φ),
y = r sin(θ) sin(φ) and z = r cos(θ). Written with these coordinates,

Ω = sin2(θ)dθdφ

dΩ = 2 sin(θ) cos(θ)dθdθdφ+ sin2(θ)(ddθdφ− dθddφ)

This is zero because d2 = 0 and because the wedge of a one-form with itself is
zero. The map in these coordinates sends (r, θ, φ) to the point on (1, θ, φ). A
differential form Θ is the pull-back of a form on S2 via f if and only if both Θ
and dΘ annihilate the vector fields in the kernel of the differential of f . Since
these vector fields are proportional ∂/∂r in this case, both of the conditions
are obeyed by Ω. If Ω were exact, then its integral over S2 would be 0, but
this integral is equal to 4π.

6. (RA) Consider the linear ODE f ′′+P f ′+Qf = 0 on the interval (a, b) ⊂ R,
with P, Q denoting C∞ real valued functions on (a, b). Recall the definition
of the Wronskian W (f1, f2) = f1 f

′
2 − f ′1 f2 associated to any two solutions

f1, f2 of this differential equation.

(a) Show that W (f1, f2) either vanishes identically or is everywhere nonzero,
depending on whether the two solutions f1, f2 are linearly dependent or
not.

(b) Now suppose that f1, f2 are linearly independent, real valued solutions.
Show that they have at most first order zeroes, and that the zeroes occur
in an alternating fashion: between any two zeroes of one of the solutions
there must be a zero of the other solution.

Solution:

W ′(f1, f2) = f ′1 f
′
2 + f1 f

′′
2 − f ′′1 f2 − f ′1 f ′2 =

= f2(Pf
′
1 +Qf1)− f1(Pf ′2 +Qf2) = −P W (f1, f2) ,

which implies W (f1, f2) = c e−P . In particular, W (f1, f2) either vanishes
identically or not at all. The Wronskian vanishes at some x0 ∈ (a, b) if and
only if the initial conditions for (f ′1, f1) and (f ′2, f2) are proportional at x0,
which is the case if and only if the global solutions are proportional. This
implies (a). Next suppose that f1, f2 are real valued, linearly independent
solutions. Since W (f1, f2) never vanishes, neither solution can have a double
zero; moreover, if f1(x0) = 0 at some x0 then f2(x0) 6= 0, and vice versa.
Finally suppose that f1(x0) = 0, f1(x1) = 0, with x0 < x1 and f1(x) 6= 0
for x ∈ (x0, x1). Since the zeroes are first order, the derivatives of f1 at the



two points must have opposite signs. Since the Wronskian has the same sign
globally, f2 cannot have the same sign at the two points. It follows that f2
vanishes somewhere between x0 and x1. Similarly, between any two zeros of
f2 there must be a zero of f1. That is the assertion (b).
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1. (DG) Consider the graph S of the function F (x, y) = cosh(x) cos(y) in R3 and
let

Φ : R2 → S ⊂ R3

be its parametrization: Φ(x, y) = (x, y, cosh(x) cos(y)).

(a) Write down the metric on R2 that is defined by the rule that the inner
product of two vectors v and w at the point (x, y) is equal to the inner
product of Φ∗(v) and Φ∗(w) at the point Φ(x, y) in R3.

(b) Define the Gaussian curvature of a general surface embedded in R3.

(c) Compute the Gaussian curvature of the surface S at the point (0, 0, 1).

Solution: The push-forward via Φ∗ of the vectors ∂/∂x and ∂/∂y at a given
point (x, y) are the vectors in R3 at (x, y, F (x, y)) given by Φ∗(∂/∂x) =
(1, 0, Fx) and Φ∗(∂/d∂y) = (0, 1, Fy). The metric is

g = (1 + F 2
x )dx⊗ dx+ FxFy(dx⊗ dy + dy ⊗ dx) + (1 + F 2

y )dy ⊗ dy.

In this problem, Fx = sinh(x) cos(y) and Fy = − cosh(x) sin(y).

The Gauss curvature is the determinant of the second fundamental form as
computed using an orthonormal frame for the metric whereby the inner prod-
uct of any two tangent vectors is their R3 inner product. The second funda-
mental form is defined as follows: Let n denote a unit length normal to the
surface and let (e1, e2) denote an orthonormal frame at a given point. The sec-
ond fundamental form has components (mab) defined by mab = 〈ea,∇eb(n)〉 It
is also defined by writing the Riemann curvature tensor R for this metric using
an orthornormal frame (e1, e2) for T ∗S as R = κ(e1∧e2)⊗(e1∧e2). In the case
of the surface S, the normal vector is n = (−Fx,−Fy, 1)/(1 + F 2

x + F 2
y )1/2.

At the point (0, 0, 1) in S, the vectors d/dx and d/dy are orthonormal. A
computation then finds that the Gauss curvature is −1.

2. (RA) Let f(x) ∈ C(R/Z) be a continuous C-valued function on R/Z and let∑∞
n=−∞ an e

2πinx be its Fourier series.

(a) Show that f is C∞ if and only if |an| = O(|n|−k) for all k ∈ N.

(b) Prove that a sequence of functions { fn}n≥1 in C∞(R/Z) converges in
the C∞ topology (uniform convergence of functions and their derivatives

of all orders) if and only if the sequences of k-th derivatives { f (k)n }n≥1,
for all k ≥ 0, converge in the L2-norm on R/Z.



Solution A simple integration by parts argument shows that f ∈ C1(R/Z)
implies

f ′(x) = 2πi
∑∞

n=−∞
nan e

2πinx .

Hence for all k ∈ N and f ∈ C∞(R/Z),

f (k)(x) = (2πi)k
∑∞

n=−∞
nk an e

2πinx

is the Fourier series of a continuous, hence L2 function, with squared L2 norm

‖f (k)‖2L2 = (2π)2k
∑∞

n=−∞
n2k |an|2 < ∞ .

It follows that for fixed k, |n|k |an| is bounded.

The topology of C∞(R/Z) is defined by the family of norms f 7→ ‖f (k)‖sup ,
and according to (a), also by the family of seminorms f 7→ ‖f (k)‖L2 , because

‖f (k)‖L2 ≤ ‖f (k)‖sup ≤ (2π)k
∑∞

n=−∞
|n|k |an|

= (2π)k
∑

n6=0
|n|k+1 |an| |n|−1 ≤ 1

2π (
∑

n 6=0 |n|−2)1/2‖f (k+1)‖L2 .

3. (AG) Let C be a smooth projective curve over C and ω⊗2C the square of its
canonical sheaf.

(a) What is the dimension of the space of sections Γ(C,ω⊗2C )?

(b) Suppose g(C) ≥ 2 and s ∈ Γ(C,ω⊗2C ) is a section with simple zeros.
Compute the genus of Σ = {x2 = s} in the total space of the line bundle
ωC , i.e. the curve defined by the 2-valued 1-form

√
s.

Solution: Write L = ω⊗2C and g = g(C), then deg(L) = 4g − 4. For g = 0:
h0(L) = 0 since L is negative, for g = 1: h0(L) = 1 since L is trivial, and for
g ≥ 2: h0(L) = 3g − 3 by Riemann–Roch.

For the second part note that the projection T ∗C → C gives a natural 2:1
covering Σ → C which is ramified at the 4g − 4 zeros of s. The Riemann–
Hurwitz formula gives χ(Σ) = 2χ(C)− (4g − 4), thus g(Σ) = 4g − 3.

4. (AT) Show (using the theory of covering spaces) that every subgroup of a free
group is free.

Solution: For a set I of generators we let X =
∨
I S

1, then F = π1(X) is the
free group on I. Let G ⊂ F be a subgroup, then there is a covering p : Y → X
with p∗(π1(Y )) = G and p∗ is injective. Note that Y has the stucture of a
connected 1-dimensional CW complex and is thus homotopy equivalent to a
wedge of S1’s by contracting a maximal subtree. It follows that G ∼= π1(Y ) is
free.



5. (CA)

(a) Define Euler’s Gamma function Γ(z) in the half plane Re(z) > 0 and
show that it is holomorphic in this half plane.

(b) Show that Γ(z) has a meromorphic continuation to the entire complex
plane.

(c) Where are the poles of Γ(z)?

(d) Show that these poles are all simple and determine the residue at each
pole.

Solution:

Γ(z) =

∫ ∞
0

tze−tdt/t

The identity Γ(z+ 1) = zΓ(z) then follows from integration by parts. Rewrit-
ing this identity as

Γ(z) = Γ(z + 1)/z

at z = 0 with residue 1. Using this identity again, we can extend to the half
plane Re(z) > −2 with a simple pole at z = −1. Continuing in this manner,
we get a meromorphic continuation to the entire plane with simple poles at
the negative integers. The residue at z = −n is (−1)n/n!.

6. (A) Let G be a finite group, and ρ : G → GLn(C) a linear representation.
Then for each integer i ≥ 0 there is a representation ∧iρ of G on the exterior
power ∧i(Cn). Let Wi be the subspace (∧i(Cn))G of ∧i(Cn) fixed under this
action of G.

Prove that dimWi is the T i coefficient of the polynomial

1

|G|
∑
g∈G

det(1n + Tρ(g))

where 1n is the n× n identity matrix.

Solution: It is a standard consequence of Schur’s lemma that if (V, %) is any
finite-dimensional representation of G then


