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1. (RA) Let H be a Hilbert space and {ui} an orthonormal basis for H. Assume
that {xi} is a sequence of vectors such that∑

||xn − un||2 < 1.

Prove that the linear span of {xi} is dense in H.

Solution. To show that the linear span L = span{xi} is dense, it suffices to
show L̄⊥ = 0. Suppose not, then there exists v 6= 0 with v ⊥ xi for all i. We
may assume ‖v‖ = 1. Then

v =
∞∑
i=0

(v, ui)ui

so ‖v‖2 =
∑
|(v, ui)|2. On the other hand, by the Cauchy-Schwarz inequality

|(v, u+ i)|2 = |(v, xi − ui)|2 ≤ ‖v‖‖xi − ui‖ = ‖xi − ui‖.

Thus
1 = ‖v‖2 =

∑
|(v, ui)|2 ≤

∑
‖xi − ui‖2 < 1

a contradiction.

2. (T) Let CPn be complex projective n-space.

(a) Describe the cohomology ring H∗(CPn,Z) and, using the Kunneth for-
mula, the cohomology ring H∗(CPn × CPn,Z).

(b) Let ∆ ⊂ CPn×CPn be the diagonal, and δ = i∗[∆] ∈ H2n(CPn×CPn,Z)
the image of the fundamental class of ∆ under the inclusion i : ∆ →
CPn × CPn. In terms of your description of H∗(CPn × CPn,Z) above,
find the Poincaré dual δ∗ ∈ H2n(CPn × CPn,Z) of δ.

Solution.

(a) The cohomology ring H∗(CPn,Z) = Z[α]/αn+1, where deg α=2. Since
H∗(CPn,Z) are Z-free, the Künneth formula implies

H∗(CPn × CPn,Z) ∼= H∗(CPn,Z)⊗H∗(CPn,Z)

(here ⊗ is the graded tensor product)

∼= Z[α]/αn+1 ⊗ Z[β]/βn+1 = Z[α, β]/(αn+1, βn+1),

with deg α = deg β = 2.



(b) Put X = CPn × CPn.
Poincaré duality allows us to define a pushforward map I∗ : Hk(∆) →
Hk+2n(X) by the diagram

Hk(∆)
i∗ //

PD
��

Hk+2n(X)

H2n−k(∆)
i∗ //// H2n−k(X)

PD

OO

were the lower horizontal map is the usual i∗ by functoriality. This
construction satisfies the projection formula

i∗(a ∪ i∗b) = i∗a ∪ b

for cohomology classes a, b. Observe that by construction i∗1 = δ∗. Now
put i∗1 = δ∗ =

∑
ckα

k ∪ βn−k. Then

cn−kα
nβn = i∗1 ∪ αk ∪ βn−k = i∗γ

n

where we denote by γ the generator of of the cohomology algebraH∗(∆) =
H∗(CPn) as in the previous part of the question (note that i∗α = i∗β = γ,
since the composition of the diagonal with each projection is the iden-
tity). But γn is the Poincaré dual of the class of a point in H0(∆), so
that i∗γ

n is the dual of the class of a point in H∗(X), which is αnβn.
Thus cn−k = 1, and δ∗ =

∑
αkβn−k.

3. (AG) Let X ⊂ Pn be an irreducible projective variety, G(1, n) the Grassman-
nian of lines in Pn, and F ⊂ G(1, n) the variety of lines contained in X.

(a) If X has dimension k, show that

dimF ≤ 2k − 2,

with equality holding if and only if X ⊂ Pn is a k-plane.

(b) Find an example of a projective varietyX ⊂ Pn with dimX = dimF = 3.

Solution.

(a) Consider the incidence correspondence Σ = {(l, x) : x ∈ l} ⊂ G(1, n) ×
Pn.
Since pr−11 (F )→ F has fiber isomorphic to P1, we have

dim Σ ∩ pr−11 (F ) = dim F + 1.

We now estimate the dimension of the fibers of pr2 : pr−11 (F ) → X,
noting that pr2 maps pr−11 (F ) into X by definition.
Let Lx be the fiber over x. Then Σ ∩ pr−11 (Lx) projects via pr2 into X



with finite fibers over points in X \ {x} (in fact, generically one-to-one),
because a line through x 6= y ∈ X is uniquely determined.
Thus

dim pr−11 (Lx) ∩ Σ = dim Lx + 1 ≤ dim X = kdim F + 1.

It follows that dim Σ∩pr−11 (F ) ≤ dim X+ dim X−1, so dim F ≤ 2k−2.
Equality can occur only if for generic x ∈ X, the projection pr2 : Σ ∩
pr−11 (Lx)→ X is dominant (hence surjective). In particular this implies
that for all x 6= y ∈ X, the line xy is in X. The only X with such property
is are linear subspaces of Pn. (To see the last point, take a maximal set of
independent points in X, then X must be contained in the plane spanned
by them, but also contains the plane spanned by them).

(b) Let X be the cone over the smooth quadric Q ⊂ P3 with apex P . Clearly
dim X = 2 + 1 = 3.
We know Q is ruled by two P1 family of lines and any line in Q lies in
one of those families.
It follows that a line in X = C(Q) must lie in the plane spanned by
P and a line in Q since the only rational curves on Q are the ruling
lines. But the dimension of the variety of lines in P2 is 2, and we have
two P1 family of planes which intersect each other only at P , hence dim
F (X) = 2 + 1 = 3 = dim X.

4. (CA) Let Ω ⊂ C be the open set

Ω = {z : |z| < 2 and |z − 1| > 1}.

Give a conformal isomorphism between Ω and the unit disc ∆ = {z : |z| < 1}.
Solution. The Möbius map z 7→ 2z

2−z sends the disk {|z| < 2} to {Rz < 1},
the disk {|z− 1| < 1} to {Rz < 0}, hence it sends Ω biholomorphically to the
strip {0 < Rz < 1}.
Now the map z 7→ e2πiz sends this strip biholomorphically to the upper half-
plane, since we can write down an inverse by taking a branch of 1

2πi log in the
complement of the negative imaginary axis.
Finally z 7→ −z+i

z+i maps the upper half-plane biholomorphically to the unit
disk ∆.
Thus the map

z 7→ −e
2πiz
z−2 + i

e
2πiz
z−2 + i

defines a conformal isomorphism between Ω and ∆.

5. (A) Suppose φ is an endomorphism of a 10-dimensional vector space over Q
with the following properties.



1. The characteristic polynomial is (x− 2)4(x2 − 3)3.

2. The minimal polynomial is (x− 2)2(x2 − 3)2.

3. The endomorphism φ− 2I, where I is the identity map, is of rank 8.

Find the Jordan canonical form for φ.

Solution.

(a) Denote the underlying vector space by V . We will determine V as a
Q[x]−module, where x acts via φ. As such, V splits into a direct sum of
cyclic modules, of form Q[x]/P (x)k for irreducible P .
Since φ has characteristic polynomial (x− 2)4(x2 − 3)2, dim V = 10.
Since φ has minimal polynomial (x − 2)2(x2 − 3)2, V must be a direct
sum of factros Q[x]/(x − 2)k with k ≤ 2 and Q[x]/(x2 − 3)l with l ≤ 2,
and at least one factor for which k = 2, l = 2.
This gives only two possibilities:

V ∼= Q[x]/(x2 − 3)2 ⊕Q[x]/(x2 − 3)⊕Q[x]/(x− 2)2 ⊕Q[x]/(x− 2)2

or

V ∼= Q[x]/(x2−3)2⊕Q[x]/(x2−3)⊕Q[x]/(x−2)2⊕Q[x]/(x−2)⊕Q[x]/(x−2).

Noting the φ−2I has rank 6+1+1 = 8 in the first case and 6+1+0+0 = 7
in the second case, we conclude that the first case occurs. Thus

V⊗C ∼= C[x]/(x−
√

3)2⊕C[x]/(x+
√

3)2⊕C[x]/(x−
√

3)⊕C[x]/(x+
√

3)⊕(C[x]/(x−2)2)2

so that the Jordan normal form of φ is

√
3 1 0 0 0 0 0 0 0 0

0
√

3 0 0 0 0 0 0 0 0

0 0
√

3 0 0 0 0 0 0 0

0 0 0 −
√

3 1 0 0 0 0 0

0 0 0 0 −
√

3 0 0 0 0

0 0 0 0 0 −
√

3 0 0 0 0
0 0 0 0 0 0 2 1 0 0
0 0 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 2


.

6. (DG) Let γ : (0, 1)→ R3 be a smooth arc, with γ′ 6= 0 everywhere.

(a) Define the curvature and torsion of the arc.

(b) Characterize all such arcs for which the curvature and torsion are con-
stant.



Solution. We assume γ is parameterized by arc-length, so that |γ′(t)| = 1.

(a) The curvature of γ is
κ(t) = |γ′′(t)|.

Put v = γ′. Because (γ′, γ′) = 1, differentiating with respect to t gives
(γ′, γ′′) = 0, hence v ⊥ γ′′. Define the normal n to be the unit vector in
the direction of γ′′, so

n(t) =
γ′′(t)

|γ′′(t)|
.

(If γ′′ = 0, γ lies on a line and has curvature 0 and we do not define n in
this case).
We have

γ′′(t) = κ(t)γ′(t),

that is
n = κv.

The binormal is defined to be b = v ∧ n. Note that v, b, n is a positively
oriented orthonormal frame at each point of γ.
Finally the torsion τ is defined by

n′ = −κv + τb.

(b) We have
B′ = v′ ∧ n+ v ∧ n′ = v ∧ (−κv + τb) = −τn.

So  v′

n′

b′

 =

 0 κ 0
−κ 0 τ
0 −τ 0

 v
n
b

 .

Suppose that κ, τ are constant along γ. We will show that γ is a helix (or
a circle or a line for degenerate values of κ, τ) by setting up a differential
equation that γ satisfies. Assume κ, τ 6= 0.

We have v = γ′, v′ = γ′′ = κn, so n = γ′′

κ , b = γ′∧γ′′
κ . Also n′ = γ′′′

κ =

−κγ′′′ + τ γ
′∧γ′′
κ . This gives γ′′′1

γ′′′2
γ′′′3

 = −κ2
 γ′′1

γ′′2
γ′′3

+ τ

 γ′2γ
′′
3 − γ′3γ′′2

γ′3γ
′′
1 − γ′1γ′′3

γ′1γ
′′
2 − γ′2γ′′1


This is a third order system of ODE, so it suffices to find helices γ(z) =
1
r (a cos z, a sin z, bz) (here a2 + b2 = r2) with arbitrary given constant
curvature κ, torsion τ and initial vectors γ(0), γ′(0), γ′′(0) such that
γ′(0) ⊥ γ′′(0).



Looking at the helix γ(z) = (a cos z, a sin z, bz), a2 + b2 = 1, a > 0 we
have

v = γ′(z) = (−a sin z, a cos z, b)

γ′(0) = (0, a, b)

γ′′(z) = (−a cos z, a sin z, b)

γ′′(0) = (−a, 0, 0).

This gives κ = a.
n = (cos z, sin z, 0)

n′ = (− sin z, cos z, 0)

b = v ∧ n = (−b sin z, b cos z,−a)

so τ = b.
This shows that we can arrange the helix to have arbitrary constant
curvature and torsion κ, τ.
It is clear that by shifting z and scaling we can arrange the helix so that
γ′(0), γ′′(0) are an arbitrary pair of orthogonal vectors. By a translation,
we can arrange for γ(0) to be any given point. This shows that we
can arrange our initial conditions to be arbitrary, and hence all space
curves with non-zero constant curvature and torsion are helices. One
can also easily show that curves with torsion 0 are circles, and curves
with curvature 0 are lines.
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1. (CA) Let ∆ = {z : |z| < 1} ⊂ C be the unit disc, and ∆∗ = ∆ \ {0} the
punctured disc. A holomorphic function f on ∆∗ is said to have an essential
singularity at 0 if znf(z) does not extend to a holomorphic function on ∆ for
any n.

Show that if f has an essential singularity at 0, then f assumes values arbi-
trarily close to every complex number in any neighborhood of 0—that is, for
any w ∈ C and ∀ε and δ > 0, there exists z ∈ ∆∗ with

|z| < δ and |f(z)− w| < ε.

Solution. Suppose the contrary, so there exists δ > 0, ε > 0, w ∈ C such
that |f(z)− w| > ε for all |z| < δ.
Then the function g(z) = 1

f(z)−w is defined and holomorphic in |z| < δ.

Furthermore |g(z)| < 1
ε for such z. Hence the singularity of g at 0 is removable,

so g(z) is holomorphic at 0. But that means g(z) = znh(z) for holomorphic h
in |z| < δ and h(0) 6= 0, hence 1

h is holomorphic at 0.
Now

f(z) = w +
1

g(z)
= w +

1

znh(z)

so znf(z) extends to a holomorphic function on ∆, a contradiction.

2. (AG) Let S ⊂ P3 be a smooth algebraic surface of degree d, and S∗ ⊂ P3∗ the
dual surface, that is, the locus of tangent planes to S.

(a) Show that no plane H ⊂ P3 is tangent to S everywhere along a curve,
and deduce that S∗ is indeed a surface.

(b) Assuming that a general tangent plane to S is tangent at only one point
(this is true in characteristic 0), find the degree of S∗.

Solution. We assume d > 1 throughout.
The projective tangent plane to F (X,Y, Z, T ) = 0 at P ∈ {F = 0} has
equation ∂F

∂XX + ... + ∂F
∂T T = 0 (the partial derivatives are evaluated at P ).

In terms of coordinates, the Gauss map S 7→ S∗ ⊂ P3∗ is given by

[X : Y : Z : T ] 7→ [
∂F

∂X
:
∂F

∂Y
:
∂F

∂Z
:
∂F

∂T
]

which is a morphism because S is smooth.



(a) Suppose H ⊂ P3 is a plane tangent to S everywhere along a curve γ. We
can arrange so that H is T = 0. Then H is tangent to F = 0 along γ
means ∂F

∂X = ∂F
∂Y = ∂F

∂Z = 0 along γ.

But dim γ = 1, dim ( ∂F∂X = 0) ≥ 2, so ∂F
∂X = 0 must intersect γ at some

point P. But for this P we have ∂F
∂X = ... = ∂F

∂T = 0, so P is a singular
point of S, a contradiction.

(b) Put φ : S → S∗ ⊂ P3∗ for the Gauss map. Since a general tangent plane
to S is tangent at only one point of S, φ is generically one-to-one.
We can find deg S∗ by intersecting S∗ with a generic line l ∈ P3∗.
Arrange coordinates so that our line has equations Z∗ = T ∗ = 0 for dual
coordinates [X∗ : Y ∗ : Z∗ : T ∗] of P3∗.
The image of [X : Y : Z : T ] ∈ S is in the intersection iff ∂F

∂Z = ∂F
∂T =

F = 0 at that point. Since ∂F
∂Z = 0, ∂F∂T = 0 are generically hypersurfaces

of degree d−1, and F has degree d, a generic choice of the line (reflected
in the generic choice of coordinates) makes the hypersurfaces intersect
at (d− 1)2d points. We can arrange so that l ∩ S∗ lies in the open dense
subset where φ−1 is a singleton, because a generic point Q will be the
only point in S with image φ(Q).
Hence this shows deg S∗ = (d− 1)2d.

(Alternatively, one has φ∗O(1) ∼= O(d − 1). Computing the Hilbert
function we have χ(OS∗(n)) = χ(φ∗OS(n)) up to terms of degree < 2 in
n, because φ is generically one-to-one.
But φ∗(OS ⊗ φ∗O(1)) ∼= φ∗OS ⊗O(1), so

χ(φ∗OS(n)) = χ(OS((d+ 1)n)).

Since χ(OS(n)) = 1
2!dn

2 + ..., we have χ(OS∗(n)) = 1
2!d(d − 1)2n2 + ...,

giving the degree of S∗ to be d(d− 1)2.)

3. (T) Let X = S1 ∨ S1 be a figure 8, p ∈ X the point of attachment, and
let α and β : [0, 1] → X be loops with base point p (that is, such that
α(0) = α(1) = β(0) = β(1) = p) tracing out the two halves of X. Let Y be
the CW complex formed by attaching two 2-discs to X, with attaching maps
homotopic to

α2β and αβ2.

(a) Find the homology groups Hi(Y,Z).

(b) Find the homology groups Hi(Y,Z/3).

Solution. Y has cell structure with one 0-cell p, two 1-cells α, β and two
2-cells A, B. The cellular chain complex of Y is

0 // ZA⊕ ZB d2 // Zα⊕ Zβ 0 // Zp // 0



where d1 = 0 because we must get a Z in H0, as Y is connected.

To compute d2, we have A = nAα+nAββ, where nAα, nAββ are degrees of the
maps ∂A→ X/β, ∂A→ X/α, hence d2(A) = 2α+β. Similarly d2(B) = α+2β.
Thus the cellular chain complex if Y is

0 // ZA⊕ ZB

(
2 1
1 2

)
// Zα⊕ Zβ 0 // Zp // 0

The cellular chain complex for Z/3 coefficient is obtained by reducing the
above mod 3. This gives:

(a) We already know H0(Y,Z) = Z.
H1(Y,Z) = Zα⊕ Zβ/(2α+ β = 0, α+ 2β = 0) = Z/3.
H2(Y,Z) = 0 since 2x+ y = x+ 2y = 0 imples x = y = 0 in Z.
All other homology groups vanish.

(b) H0(Y/Z/3) = Z/3.
H1(Y,Z/3) is the cokernel of (Z/3)2 → (Z/3)2 given by (x, y) 7→ (−x +
y, x− y), so H1(Y,Z/3) = Z/3.
H2(Y,Z/3) = Z/3, since 2x+ y = x+ 2y = 0 imples x = y in Z/3.
All other homology groups vanish.

4. (DG) Let f = f(x, y) : R2 → R be smooth, and let S ⊂ R3 be the graph of
f , with the Riemannian metric ds2 induced by the standard metric on R3.
Denote the volume form on S by ω.

(a) Show that

ω =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1.

(b) Find the curvature of the metric ds2 on S

Solution.

(a) We have a parameterization of S given by φ : (x, y) 7→ (x, y, f(x, y)).
We have (the lower index denotes the variable with respect to which we
differentiate)

φx = (1, 0, fx)

φx = (0, 1, fy)

The first fundamental form is Edx2 + 2Fdxdy +Gdy2 with

E = (φx, φx) = 1 + f2x

F = (φx, φy) = fxfy

G = (φy, φy) = 1 + f2y



hence the volume form

ω =
√
EF −G2 =

√
(1 + f2x)(1 + fy)2 − (fxfy)2 =

√
1 + (

∂f

∂x
)2 + (

∂f

∂y
)2.

(b) The normal vector is

N =
φx ∧ φy
|φx ∧ φy|

=
1

1 + f2x + f2y
(−fx,−fy, 1).

φxx = (0, 0, fxx)

φxy = (0, 0, fxy)

φyy = (0, 0, fyy)

The second fundamental form Ldx2 + 2Mdxdy +Ndy2 is given by

L = −(N,φxx) = −fxx

M = −(N,φxy) = −fxy
N = −(N,φyy) = −fyy

The Gaussian curvature is given by

K(x, y) =
LN −M2

EG− F 2
=

∂2f
∂x2

∂2f
∂y2
− ( ∂2f

∂x∂y )2

1 + (∂f∂x )2 + (∂f∂y )2

5. (RA) Suppose that O ⊂ R2 is an open set with finite Lebesgue measure. Prove
that the boundary of the closure of O has Lebesgue measure 0.

Solution. We will construct a counter-example. First we will construct a
”fat” Cantor set X in the interval I = [0, 1]. Let X1 be I with the interval
of length 1

4 in the middle removed. X1 consists of two intervals of length
1
2(1 − 1

4). Inductively suppose we get Xn consisting of 2n intervals of length
1
2n (1− 1

4 − ...
2n−1

4n ). Then Xn+1 is obtained by removing the middle intervals
of length 1

4n+1 in each interval of Xn. Thus Xn+1 consists of 2n+1 intervals of
length 1

2n+1 (1 − 1
4 − ... −

1
4n+1 ). The Xn form a decreasing sequence of non-

empty compact subset of I, hence X = ∩Xn is a non-empty compact subset
of I. Note that µ(X) = 1 − 1

4 −
2
42
− ... = 1

2 . X is also nowhere dense, since
Xn can not contain an interval of size > 1

2n .

We now construct O as the complement of X×[0, 1] inside the square [−2, 2]×
[2, 2], which is open as X × [0, 1] is compact. It has finite measure. Because
X is nowhere dense, X × [0, 1] can not contain any rectangle, so O is dense
in [−2, 2] × [−2, 2]. It follows that the boundary of O will contain X × [0, 1]
which has measure 1

2 . This gives the desired counter-example.



6. (A) Let R be the ring of integers in the field Q(
√
−5), and S the ring of

integers in the field Q(
√
−19).

(a) Show that R is not a principal ideal domain

(b) Show that S is a principal ideal domain

Solution.

(a) We have α = a + b
√
−5 ∈ R iff TrQ(

√
−5)/Q(α) ∈ Z, NQ(

√
−5)/Q(α) ∈ Z

iff 2a ∈ Z, a2 + 5b2 ∈ Z. This implies 2a, 2b ∈ Z and 4a2 + 20b2 ∈ 4Z, so
2a, 2b ∈ 2Z, so a, b ∈ Z.
Hence R = Z[

√
−5].

If R is a PID, it must be UFD. But in R we have 6 = 2 · 3 = (1 +√
−5)(1−

√
−5).

We claim these are two essentially different factorizations. Indeed any
unit ε ∈ R has norm 1, and N(2) = 4, N(3) = 9, N(±

√
−5) = 6 (we

write N as a shorthand for the norm). There are no elements of norm 2
or 3 in R (because a2 + 5b2 = 2 or 3 has no solution mod 5), hence all
factors in the above factorization are non-associated irreducible elements
of R.
Thus R is not a UFD, hence not a PID.

(b) By the Minkowski bound, every class in the ideal class group of OK of a
number field K contains an integral ideal of norm ≤MK =

√
|D|( 4

π )r2 n!nn ,
where n = [K : Q], 2r2 is the number of complex embeddings of K and
D the discriminant of K.

For K = Q(
√
−19) we have n = 2, r2 = 1. To compute D, an argument

as in (a) shows that S = Z[1+
√
−19
2 ]. Thus a Z−basis for S is given by 1,

1+
√
−19
2 . Hence D = −19. The Minkowski bound is thus MK = 2

π

√
19 <

4.

To show that S is a PID it suffices to show that all ideal classes are trivial.
By the Minkowski bound, it suffices to check that all prime ideals in S
of norm < 4 are principal. A prime ideal p of norm 2, 3 must lie above
2. 3 respectively. Note that S ∼= Z[x]/(x2− x+ 5), and has discriminant
−19 which is coprime to 2, 3, so the splitting behavior of 2, 3 in S are
determined by the factorization of x2 − x + 5 in F2, F3. But one easily
checks that x2 − x + 5 has no solution in F2, F3, hence stay irreducible
there. It follows that 2, 3 are inert in S, hence there are no prime ideals
in S of norm 2, 3, hence we are done.
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1. (A) Let c ∈ Z be an integer not divisible by 3.

(a) Show that the polynomial f(x) = x3−x+ c ∈ Q[x] is irreducible over Q.

(b) Show that the Galois group of f is the symmetric group S3.

Solution.

(a) If f is reducible in Q[x], it is reducible in Z[x] by Gauss’ lemma, hence
reducible ober F3[x]. But f mod 3 has no zeroes in F3, hence can not
factorize there. Thus f is irreducible in Q[x].

(b) Because f has degree 3, its splitting field K has degree at most 6 over
Q. Since f is irreducible, 3|[K : Q], hence [K : Q] = 3 or 6, depending on
whether Gal(K/Q) is A3 or S3 (it is a subgroup of S3 via the transitive
action on the roots of f in Q̄.
If [K : Q] = 3, the discriminant ∆(f) must be a square in Q. But
∆(f) = 27c2−4 = −1 mod 3, hence ∆(f) ∈ Z is not s square in Z, hence
not a square in Q. Hence the Galois group is S3.

2. (CA) Let τ1 and τ2 ∈ C be a pair of complex numbers, independent over R,
and Λ = Z〈τ1, τ2〉 ⊂ C the lattice of integral linear combinations of τ1 and τ2.
An entire meromorphic function f is said to be doubly periodic with respect
to Λ if

f(z + τ1) = f(z + τ2) = f(z) ∀z ∈ C.

(a) Show that an entire holomorphic function doubly periodic with respect
to Λ is constant.

(b) Suppose now that f is an entire meromorphic function doubly periodic
with respect to Λ, and that f is either holomorphic or has one simple
pole in the closed parallelogram

{aτ1 + bτ2 : a, b ∈ [0, 1] ⊂ R}.

Show that f is constant.

Solution.

(a) The lattice Λ has fundamental domain D = {xτ1 + yτ2 : 0 ≤ x ≤ 1, 0 ≤
y ≤ 1} which is compact. If f is doubly periodic with respect to Λ, put
M = maxD|f |.



For any z ∈ C, there is a z0 ∈ D with f(z) = f(z0), hence f(z) ≤M for
all z. Hence f is a bounded entire function, hence constant by Liouville’s
theorem.

(b) Suppose f is not constant. Translating a fundamental domain if neces-
sary and using (a), we can assume that f has a simple pole inside the
fundamental domain D. By the residue theorem∫

∂D
fdz =

∑
z∈Int(D)

2πiResz(f)

with the right-hand side non-zero, because f can have non-zero residue
only at the unique pole, and the residue there is non-zero since the pole
is simple. But Λ−periodicity implies that in the integral on the left the
integral along opposite edges of D cancel each other, so the left-hand
side is 0, a contradiction.

3. (DG) Let M and N be smooth manifolds, and let π : M × N → N be the
projection; let α be a differential k-form on M×N . Show that α has the form
π∗ω for some k-form ω on N if and only if the contraction ιX(α) = 0 and the
derivative LX(α) = 0 for any vector field X on M ×N whose value at every
point is in the kernel of the differential dπ.

Solution. If α = π∗ω

ιX(α)(Y1, ..., Yk−1) = π∗ω(X, , Y1, ..., Yk−1) = ω(dπ(X), ..., dπ(Yk−1) = 0

for arbitrary vector fields Y1, ..., Yk−1 on M ×N and X whose value at every
point is in ker dπ.

Also

LX(α)(Y1, ..., Yk) = X(π∗ω(Y1, ...Yk)) = π∗X(ω(Y1, ..., Yk)) = 0

because π∗X = 0 for X as above.

We now show the converse.

The problem is local on both M and N (by taking partitions of unity on M ,
N and take their product as a partition of unity on M ×N), so we work in a
neighborhood of M ×N which is of the form U × V for coordinate neighbor-
hoods U , V of M , N . Call the corresponding local coordinates x1,...,xm amd
y1,...,yn. We will also use standard multi-index notation.
Let

α =
∑

|I|+|J |=k,I⊂{1,...,m},J⊂{1,...,n}

fIdxI ∧ dyJ

be a k−form satisfying the necessary conditions. A general vector field X
killed by π∗ is of form

∑
ai

∂
∂xi
.



We have

ι ∂
∂xi

(fdxI ∧ dyJ) = z =

{
0 if i /∈ I
±fdxI\{i} ∧ dyJ if i ∈ I

Hence the condition ι ∂
∂xi

α = 0 implies fIJ = 0 for all I 3 i. Since i is arbitrary,

fIJ = 0 for all I 6= ∅. This means

α =
∑

|J |=k,J⊂{frm[o]−−,...,n}

fJ(x1, ..., xm, y1, ...yn)dyJ .

But

0 = L ∂
∂xi

α(
∂

∂yi1
, ...,

∂

∂yik
) =

∂

∂xi
(fi1...ik)

for i1 < ... < ik, hence the functions fJ are functions on the yj only, so they
are of form π∗gJ for smooth functions gJ on N . Since the dyJ are pulled back
from N, we have α = π∗ω for some k-form ω on N .

4. (RA) Show that the Banach space `p can be embedded as a summand in
Lp(0, 1)—in other words, that Lp(0, 1) is isomorphic as a Banach space to the
direct sum of `p and another Banach space.

Solution. Choose disjoint intervals In ⊂ (0, 1) and let fn be a positive mul-
tiple of the characteristic function of In, normalized by ‖fn‖p = 1. Define an
embedding ι : lp → Lp(0, 1) by (an) 7→

∑
anfn. Observe that∫

|
s∑
r

anfn|p =
s∑
r

∫
In

|an|p|fn|p =
s∑
r

|an|p

This shows that if (an) ∈ lp then
∑
anfn converges in Lp(0, 1) and has the

same norm. This shows that our map is defined and is an isometric embedding.
Therefore it remains to write down a continuous projection P splitting it.
Define P : Lp(0, 1) → lp by f 7→ (

∫
f |fn|p−1)n. The map is defined since

f ∈ L1(0, 1). Now we have by Hölder’s inequality (note that (p− 1)q = p)∑
n

|
∫
In

f |fn|p−1|p ≤
∑
n

(

∫
In

|f |p)(
∫
|fn|(p−1)q)

p
q =

∑
n

∫
In

|f |p ≤ ‖f‖pp

This shows that P is continuous (indeed of norm ≤ 1), and clearly Pι = id.
This gives the desired decomposition of Lp(0, 1) with one summand lp.

5. (T) Find the fundamental groups of the following spaces:

(a) SL2(R)

(b) SL2(C)

(c) SO3(C)



Solution.

(a) By the polar decomposition, any A ∈ GL2(R) can be written uniquely
as A = PU with U ∈ O2(R) and P a positive definite symmetric matrix.
If A ∈ SL2(R) thn U ∈ SO2(R).
This gives a homeomorphism

SL2(R) ∼= P+ × SO2(R).

The space P+ of positive definite symmetric matrices is contractible since
it is an open cone in a real vector space while SO2(R) ∼= S1. Thus
π1(SL2(R)) ∼= π1(S

1) ∼= Z.
(b) Similar to (a), the complex polar decomposition gives a unique decom-

position A = PU for A ∈ SL2(C), where U ∈ SU2(C) and P a positive
definite Hermitian matrix. Again, the space of positive definite Hermi-
tian matrix is contractible, hence

π1(SL2(C)) ∼= π1(SU2(C)) ∼= π1(S
3) = 0

noting that SU2(C) ∼= S3 via (a, b) 7→
(
a b̄
b ā

)
where a, b are complex

numbers such that |a|2 + |b|2 = 1.

(c) SL2(C) acts on sl2 ∼= C3 (the subspace of M2(C) consisting of trace 0
matrices). This action preserves the non-degenerate symmetric bilinear
form given by K(A,B) = Tr(ad(A).ad(B)) where ad(A) is the operator
X 7→ [A,X] = AX − XA on sl2. This gives a morphism SL2(C) →
SO3(C) whose kernel is ±I. Hence we get PSL2(C) ↪→ SO3(C). Since
both sides are connected Lie groups of the same complex dimension,
the map is an isomorphism. From (b) we know that SL2(C) is simply
connected, hence is the universal cover of SO3(C), so π1(SO3(C)) ∼= Z/2.

6. (AG) Let X ⊂ An be an affine algebraic variety of pure dimension r over a
field K of characteristic 0.

(a) Show that the locus Xsing ⊂ X of singular points of X is a closed subva-
riety.

(b) Show that Xsing is a proper subvariety of X.

Solution.

(a) Let I(X) = (f1, ..., fm). Then x ∈ X is singular iff the Jacobian matrix
J = (∂fixj ) has rank < codim (X) = n − r at x. This happens iff every

(n−r)× (n−r) minors of J(x) vanish. Since these are regular functions,
Xsing is a closed subvariety of X.



(b) It suffices to treat the case X irreducible. In characteristic 0, X is bi-
rational to a hypersurface F = 0 in some affine space An. To see this,
observe that the function field K(X) is a simple extension of a purely
transcendental field k(t1, ...tr), by the primitive element theorem.
Hence K(X) = k(t1, ...tr, u) with u algebraic over k(t1, ...tr). Note t1, ...tr
is a transcendental basis of K(X). If G is the minimal polynomial of u
over k(t1, ..tr), after clearing denominators we see that K(X) is the func-
tion field of a hypersurface F = 0 in Ar+1. In particular they have some
isomorphic dense open subsets.

Thus we are reduced to the case X is a hypersurface F = 0 in Ar+1. In
this case Xsing is the locus ∂F

∂Xi
= 0 and F = 0. If Xsing = X, using

the UFD property of k[X1, ..., Xr+1] and the fact F is irreducible, we
deduce that F | ∂F∂Xi . This forces ∂F

∂Xi
= 0 for degree reasons. But this can

not happen in characteristic 0, as can be seen by looking at a maximal
monomial appearing in F with respect to the lexicographic order. This
shows that X must contain non-singular points.


