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1. (a) Prove that the Galois group G of the polynomial X6 + 3 over Q is of
order 6.

(b) Show that in fact G is isomorphic to the symmetric group S3.

(c) Is there a prime number p such that X6 + 3 is irreducible over the finite
field of order p?

Solution. We initially work over any field k in which the polynomial X6 + 3
is irreducible. Clearly k cannot have characteristic 2 or 3. Let α be a root of
X6 +3 in an algebraic closure k̄ of k, and set ω = (−1+α3)/2. Then a simple
calculation gives ω2 + ω + 1 = 0, so ω3 = 1 but ω 6= 1. In fact, 1, ω, ω2, −1,
−ω, −ω2 are all distinct elements of k̄; they are the six roots of X6 + 1 = 0,
so α, ωα, ω2α, −α, −ωα, −ω2α are the six roots of X6 + 3 = 0. These roots
all lie in the extension k(α), which has degree 6 because α is a root of an
irreducible degree 6 polynomial. So the Galois group of X6 + 3 over k is of
order 6.

The Galois group acts transitively on the roots of the polynomial X6 + 3,
so there are elements σ and τ of the Galois group sending α to ωα and −α
respectively. Then

σ(ω) =
−1 + σ(α)3

2
=

−1 + (ωα)3

2
=

−1 + α3

2
= ω

and

τ(ω) =
−1 + τ(α)3

2
=

−1 + (−α)3

2
=

−1 − α3

2
= −1 − ω = ω2.

Therefore τ(σ(α)) = τ(ωα) = −ω2α while σ(τ(α)) = σ(−α) = −ωα, so σ and
τ do not commute. So G is a nonabelian group of order 6, and thus must be
isomorphic to the symmetric group S3.

We now finish the problem.

(a) The polynomial X6 + 3 is irreducible over Q by Eisenstein’s criterion at
the prime 3. So the preceding arguments show that the Galois group of
X6 + 3 over Q is of order 6.

(b) Similarly, we also showed under the same assumption that the Galois
group was isomorphic to S3.



(c) No, there is no prime p such that X6 +3 is irreducible over the finite field
of order p. If there was, then by the preceding arguments, the extension
formed by adjoining a root of X6 + 3 would be a Galois extension with
Galois group S3. But the Galois groups of finite extensions of the field
of order p are all cyclic groups, a contradiction.

2. Evaluate the integral
∫ ∞

0

√
t

(1 + t)2
dt.

Solution. Write
√

z for the branch of the square root function defined on
C − [0,∞) such that

√
z has positive real part when z = r + ǫi, ǫ small and

positive. Using the identity (
√

z)2 = z one can check that d
√

z
dz = 1

2
√

z
.

Define the meromorphic function f on C− [0,∞) by f(z) =
√

z/(1 + z)2. Let
ǫ > 0 be small and R large, and let γ be the contour which starts at ǫi, travels
along the ray z = [0,∞) + ǫi until it reaches the circle |z| = R, traverses
most of that circle counterclockwise stopping at the ray z = [0,∞) − ǫi,
then travels along that ray backwards, and finally traverses the semicircle
|z| = ǫ in the left half-plane to get back to ǫi. Consider the contour integral
∫

γ f(z) dz. The contribution from the first ray is approximately the desired

integral I =
∫∞
0

√
t/(1 + t2) dt; the contribution from the large circle is small,

because when |z| = R, |√z/(1 + z)2| is about R−3/2, and the perimeter of
the circle is only about 2πR; the contribution from the second ray is about
I again, because the sign from traveling in the opposite direction cancels the
sign coming from the branch cut in

√
z; and the contribution from the small

circle is small because f(z) is bounded in a neighborhood of 0. So

2I = lim
ǫ→0,R→∞

∫

γ

√
z

(1 + z)2
dz = 2πi

d
√

z

dz

∣

∣

∣

∣

z=−1

= 2πi
1

2
√
−1

= π

and thus I = π.

3. For X ⊂ R3 a smooth oriented surface, we define the Gauss map g : X → S2 to
be the map sending each point p ∈ X to the unit normal vector to X at p. We
say that a point p ∈ X is parabolic if the differential dgp : Tp(X) → Tg(p)(S

2)
of the map g at p is singular.

(a) Find an example of a surface X such that every point of X is parabolic.

(b) Suppose now that the locus of parabolic points is a smooth curve C ⊂ X,
and that at every point p ∈ C the tangent line Tp(C) ⊂ Tp(X) coincides
with the kernel of the map dgp. Show that C is a planar curve, that is,
each connected component lies entirely in some plane in R3.

Solution.



(a) Let X be the xy-plane; then the Gauss map g : X → S2 is constant, so
its differential is everywhere zero and hence singular.

(b) Consider the Gauss map of X restricted to C, g|C : C → S2. Then for
any point p ∈ C, d(g|C)p = (dgp)|Tp(C), which is 0 by assumption. Hence
g|C is locally constant on C. That is, on each connected component C0 of
C there is a fixed vector (the value of g|C at any point of the component)
normal to all of C0. Hence C0 lies in a plane in R3 normal to this vector.

4. Let X = (S1 × S1) \ {p} be a once-punctured torus.

(a) How many connected, 3-sheeted covering spaces f : Y → X are there?

(b) Show that for any of these covering spaces, Y is either a 3-times punc-
tured torus or a once-punctured surface of genus 2.

Solution.

(a) By covering space theory, the number of connected, 3-sheeted covering
spaces of a space Z is the number of conjugacy classes of subgroups
of index 3 in the fundamental group π1(Z). (We consider two covering
spaces of Z isomorphic only when they are related by an homeomorphism
over the identity on Z, not one over any homeomorphism of Z.) So we
may replace X by the homotopy equivalent space X ′ = S1 ∨ S1. If we
view this new space X ′ as a graph with one vertex and two directed loops
labeled a and b, then a connected 3-sheeted cover of X ′ is a connected
graph with three vertices and some directed edges labeled a or b such that
each vertex has exactly one incoming and one outgoing edge with each
of the labels a and b. Temporarily treating the three vertices as having
distinct labels x, y, z, we find six ways the a edges can be placed: loops
at x, y and z; a loop at x and edges from y to z and from z to y; similarly
but with the loop at y; similarly but with the loop at z; edges from x to y,
y to z, and z to x; and edges from x to z, z to y, and y to x. Analogously
there are six possible placements for the b edges. Considering all possible
combinations, throwing out the disconnected ones, and then treating two
graphs as the same if they differ only in the labels x, y, z, we arrive at
seven distinct possibilities.

(b) Let C be a small loop in S1 × S1 around the removed point p, and let
X0 ⊂ X be the torus with the interior of C removed, so that X0 is a
compact manifold with boundary C = S1. Now let Y be any connected,
3-sheeted covering space of X. Pull back the covering map Y → X along
the inclusion X0 → X to obtain a 3-sheeted covering space Y0 of X0.
Since X0 → X is a homotopy equivalence, so is Y0 → Y and in particular
Y0 is still connected. We can recover Y from Y0 by gluing a strip D×[0, 1)
along the preimage D of C in Y0. So, it will suffice to show that Y is



either a torus with three small disks removed, or a surface of genus two
with one small disk removed.

Since Y0 is a 3-sheeted cover of X0, it is a compact oriented surface
with boundary. By the classification of compact oriented surfaces with
boundary, Y0 can be formed by taking a surface of some genus g and
removing some number d of small disks. The boundary of Y0 is D, the
preimage of C, which is a (not necessarily connected) 3-sheeted cover of
C. So Y0 has either one or three boundary circles, i.e., d = 1 or d = 3.
Moreover, we can compute using the Euler characteristic that

2 − 2g − d = χ(Y0) = 3χ(X0) = −3.

If d = 3, then g = 1; if d = 1, then g = 2. So Y is correspondingly either
a 3-times punctured torus or a once-punctured surface of genus two.

5. Let X be a complete metric space with metric ρ. A map f : X → X is said
to be contracting if for any two distinct points x, y ∈ X,

ρ(f(x), f(y)) < ρ(x, y).

The map f is said to be uniformly contracting if there exists a constant c < 1
such that for any two distinct points x, y ∈ X,

ρ(f(x), f(y)) < c · ρ(x, y).

(a) Suppose that f is uniformly contracting. Prove that there exists a unique
point x ∈ X such that f(x) = x.

(b) Give an example of a contracting map f : [0,∞) → [0,∞) such that
f(x) 6= x for all x ∈ [0,∞).

Solution.

(a) We first show there exists at least one fixed point of f . Let x0 ∈ X be
arbitrary and define a sequence x1, x2, . . . , by xn = f(xn−1). Let d =
ρ(x0, x1). By the uniformly contracting property of f , ρ(xn, xn+1) ≤ dcn

for every n. Now observe

ρ(xn, xn+k) ≤ ρ(xn, xn+1) + · · · + ρ(xn+k−1, xn+k)

≤ dcn + · · · + dcn+k−1

≤ dcn/(1 − c).

This expression tends to 0 as n increases, so (xn) is a Cauchy sequence
and thus has a limit x by the completeness of X. Now f is continuous,
because it is uniformly contracting, so

f(x) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x,



and x is a fixed point of f , as desired.

To show that f has at most one fixed point, suppose x and y were distinct
points of X with f(x) = x and f(y) = y. Then

ρ(x, y) = ρ(f(x), f(y)) < cρ(x, y),

which is impossible since ρ(x, y) > 0 and c < 1.

(b) Let f(x) = x + e−x. Then f ′(x) = 1 − e−x ∈ [0, 1) for all x ≥ 0, so by
the Mean Value Theorem 0 ≤ f(x) − f(y) < x − y for any x > y ≥ 0.
Thus f is contracting. But f has no fixed points, because x + e−x/2 6= x
for all x.

6. Let K be an algebraically closed field of characteristic other than 2, and let
Q ⊂ P3 be the surface defined by the equation

X2 + Y 2 + Z2 + W 2 = 0.

(a) Find equations of all lines L ⊂ P3 contained in Q.

(b) Let G = G(1, 3) ⊂ P5 be the Grassmannian of lines in P3, and F ⊂ G
the set of lines contained in Q. Show that F ⊂ G is a closed subvariety.

Solution.

(a) Since K is algebraically closed and of characteristic other than 2, we
may replace the quadratic form X2 + Y 2 + Z2 + W 2 with any other
nondegenerate one, such as AB + CD. More explicitly, set A = X +√
−1Y , B = X−

√
−1Y , C = Z+

√
−1W , D = −Z+

√
−1W ; this change

of coordinates is invertible because we can divide by 2, and AB −CD =
X2 + Y 2 + Z2 + W 2.

A line contained in the surface in P3 defined by AB−CD = 0 is the same
as a plane in the subset of the vector space K4 defined by v1v2−v3v4 = 0.
Define a bilinear form (·, ·) on K4 by (v, w) = v1w2 +v2w1−v3w4−v4w3.
Then we want to find all the planes V ⊂ K4 such that (v, v) = 0 for
every v ∈ V . Observe that

(v + w, v + w) − (v, v) − (w, w) = (v, w) + (w, v) = 2(v, w),

so it is equivalent to require that (v, w) = 0 for all v and w ∈ V .

Suppose now that V is such a plane inside K4. Then V has nontrivial
intersection with the subspace {v1 = 0}; let v ∈ V be a nonzero vector
with v1 = 0. Since v1v2−v3v4 = 0, we must have either v3 = 0 or v4 = 0.
Assume without loss of generality that v3 = 0. Write u = v2, t = v4;
then (u, t) 6= (0, 0). Now consider any vector w ∈ V ; then

0 = (w, v) = w1v2 + w2v1 − w3v4 − w4v3 = uw1 − tw3.



So there exists r ∈ K such that w1 = rt and w3 = ru. We also have

0 =
1

2
(w, w) = w1w2 − w3w4 = rtw2 − ruw4.

Hence either r = 0 or there exists s ∈ K such that w2 = su and w4 = st.
So

V ⊂ { (w1, 0, w3, 0) | w1, w3 ∈ K } ∪ { (rt, su, ru, st) | r, s ∈ K }.

Since V has dimension 2, we conclude that V must be equal to one of
these two planes.

This discussion was under the assumption that v3 = 0 rather than v4 = 0;
in the second case, we find that V is of one of the forms { (w1, 0, 0, w4) |
w1, w4 ∈ K } or { (rt, su, st, ru) | r, s ∈ K } for (u, t) 6= (0, 0). But
we obtain { (w1, 0, w3, 0) | w1, w3 ∈ K } by setting (u, t) = (0, 1) in
{ (rt, su, st, ru) | r, s ∈ K } and { (w1, 0, 0, w4) | w1, w4 ∈ K } by setting
(u, t) = (0, 1) in { (rt, su, ru, st) | r, s ∈ K }. Hence all such planes V are
of one of the forms

V
(1)
u,t = { (rt, su, ru, st) | r, s ∈ K }

or
V

(2)
u,t = { (rt, su, st, ru) | r, s ∈ K }

for some (u, t) 6= (0, 0). And it is easy to see conversely that each of these
subspaces is two-dimensional and lies in the subset of K4 determined by
(v, v) = 0.

Translating this back into equations for the lines on the surface Q, we
obtain two families of lines:

L
(1)
u,t =

{[

rt + su

2
:
rt − su

2
√
−1

:
ru − st

2
:
ru + st

2
√
−1

]

| r, s ∈ K

}

,

L
(2)
u,t =

{[

rt + su

2
:
rt − su

2
√
−1

:
st − ru

2
:
st + ru

2
√
−1

]

| r, s ∈ K

}

,

where (u, t) ranges over K2 \ {(0, 0)}. The families L
(1)
∗,∗ and L

(2)
∗,∗ are

disjoint, and two pairs (u, t) and (u′, t′) yield the same line in a given
family if and only if one pair is a nonzero scalar multiple of the other.

(b) By the result of the previous part, F is the image of a regular map
P1 ∐ P1 → G, so F is a closed subvariety of G.
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1. (a) Show that the ring Z[i] is Euclidean.

(b) What are the units in Z[i]?

(c) What are the primes in Z[i]?

(d) Factorize 11 + 7i into primes in Z[i].

Solution.

(a) We define a norm on Z[i] in the usual way, |a + bi| =
√

a2 + b2. Then we
must show that for any a and b in Z[i] with b 6= 0, there exist q and r in
Z[i] with a = qb + r and |r| < |b|. Let q0 = a/b ∈ C and let q ∈ Z[i] be
one of the Gaussian integers closest to q0; the real and imaginary parts
of q differ by at most 1

2 from those of q0, so |q − q0| ≤
√

2/2 < 1. Now
let r = a − qb. Then

|r| = |a − qb| = |(q0 − q)b| = |q0 − q||b| < |b|

as desired.

(b) If u ∈ Z[i] is a unit, then there exists u′ ∈ Z[i] such that uu′ = 1, so
|u||u′| = 1 and hence |u| = 1 (since |z| > 0 for every z ∈ Z[i]). Writing
u = a + bi, we obtain 1 = |u| =

√
a2 + b2 so either a = ±1 and b = 0 or

a = 0 and b = ±1. The four possibilities u = 1, −1, i, −i are all clearly
units.

(c) Since Z[i] is Euclidean, it contains a greatest common divisor of any two
elements, and it follows that irreducibles and primes are the same: if z
is irreducible and z ∤ x and n ∤ y, then gcd(x, z) = gcd(y, z) = 1, so
1 ∈ (x, z) and 1 ∈ (y, z); hence 1 ∈ (xy, z), so z ∤ xy.

Let z ∈ Z[i]. If |z| ≤ 1, then z is either zero or a unit so is not prime. If
|z| =

√
p, p ∈ Z a prime, then u must be a prime in Z[i], because | · | is

multiplicative and |z|2 ∈ Z for all z ∈ Z[i]. It remains to consider z for
which |z|2 is composite.

Write
√

N = |z|, and factor N = p1p2 · · · pr in Z. Note that

z | zz̄ = N = p1p2 · · · pr

so if z is prime, then z divides one of the primes p = pi in Z[i]. Moreover
z̄ also divides p so N = zz̄ divides p2; since N is composite we must have
N = p2. That is, zz̄ = p2; by assumption the left side is a factorization



into irreducibles, so up to units each p on the right hand side must be a
product of some terms on the left; the only possibility is z = pu, z̄ = pū
for some unit u. Now when p ≡ 3 (mod 4), p is indeed a prime in Z[i],
because then p | a2 + b2 =⇒ p | a, b =⇒ p2 | a2 + b2, so there are no
elements of Z[i] with norm

√
p. If p ≡ 1 (mod 4), then p can be written

in the form p = a2 + b2, so p = (a + bi)(a − bi) and p is not in fact a
prime.

In conclusion, the primes of Z[i] are

• elements z ∈ Z[i] with z =
√

p, p ∈ Z prime (necessarily congruent
to 1 mod 4);

• elements of the form pu with p ∈ Z a prime congruent to 3 mod 4
and u ∈ Z[i] a unit.

(d) We first compute |11 + 7i| =
√

121 + 49 =
√

170; so 11 + 7i will be
a product of primes with norms

√
2,

√
5 and

√
17. There is only one

prime with norm
√

2 up to units and only two with a norm
√

5; a quick
calculation yields

11 + 7i = (1 + i)(1 + 2i)(1 − 4i).

2. Let U ⊂ C be the open region

U = {z : |z − 1| < 1 and |z − i| < 1} .

Find a conformal map f : U → ∆ of U onto the unit disc ∆ = {z : |z| < 1}.
Solution. The map z 7→ 1/z takes the open discs { z : |z − 1| < 1 } and
{ z : |z − i| < 1 } holomorphically to the open half-planes { z : ℜz ≥ 1

2 } and
{ z : ℑz ≤ −1

2 } respectively, so it takes U to their intersection. So we can
define a conformal isomorphism f0 from U to the interior U ′ of the fourth
quadrant by

f0(z) =
1

z
− 1 − i

2
.

Now we can send U ′ to the lower half plane by the squaring map, and that to
∆ by the Möbius transformation z 7→ 1

z−i/2 − i. Thus the composite

1

(1
z − 1−i

2 )2 + i
2

− i

is actually a conformal isomorphism from U to ∆.

3. Let n be a positive integer, A a symmetric n× n matrix and Q the quadratic
form

Q(x) =
∑

1≤i,j≤n

Ai,jxixj .

Define a metric on Rn using the line element whose square is

ds2 = eQ(x)
∑

1≤i≤n

dxi ⊗ dxi.



(a) Write down the differential equation satisfied by the geodesics of this
metric

(b) Write down the Riemannian curvature tensor of this metric at the origin
in Rn.

Solution. We first compute the Christoffel symbols Γm
ij with respect to

the standard basis for the tangent space (∂/∂xk. The metric tensor in these
coordinates is

gij = δije
Q(x) with inverse gij = δije

−Q(x).

Its partial derivatives are

∂

∂xk
gij = δije

Q(x) ∂

∂xk
Q(x) = 2δije

Q(x)
∑

l

Alkxl.

Then (using implicit summation notation)

Γm
ij =

1

2
gkm

(

∂

∂xi
gkj +

∂

∂xj
gik − ∂

∂xk
gij

)

=
1

2
δkme−Q(x)(2δkje

Q(x)Alixl + 2δike
Q(x)Aljxl − 2δije

Q(x)Alkxl)

= (δmjAli + δimAlj − δijAlm)xl.

(a) The geodesic equation is

0 =
d2xm

dt2
+ Γm

ij
dxi

dt

dxj

dt

=
d2xm

dt2
+ (δmjAli + δimAlj − δijAlm)xl

dxi

dt

dxj

dt

=
d2xm

dt2
+ 2

∑

i,l

Alixl
dxi

dt

dxm

dt
−
∑

l

Almxl

∑

i

(

dxi

dt

)2

(where we have written summations explicitly on the last line).

(b) The Riemannian curvature tensor is given by

Rl
ijk =

∂

∂xj
Γl

ik − ∂

∂xk
Γl

ij + Γl
jsΓ

s
ik − Γl

ksΓ
s
ij

= (δlkAri + δilArk − δikArl) − (δljAri + δilArj − δijArl)

+ (δlsAtj + δjlAts − δjsAtl)xt(δskAui + δisAuk − δikAus)xu

− (δlsAtk + δklAts − δksAtl)xt(δsjAui + δisAuj − δijAus)xu.

4. Let H be a separable Hilbert space and b : H → H a bounded linear operator.

(a) Prove that there exists r > 0 such that b + r is invertible.



(b) Suppose that H is infinite dimensional and that b is compact. Prove that
b is not invertible.

Solution.

(a) It is equivalent to show that there exists ǫ > 0 such that 1−ǫb is invertible.
Since b is bounded there is a constant C such that ||bv|| ≤ C||v|| for all
v ∈ H. Choose ǫ < 1/C and consider the series

a = 1 + ǫb + ǫ2b2 + · · · .

For any v the sequence v + ǫbv + ǫ2b2v + · · · converges by comparison
to a geometric series. So this series converges to a linear operator a and
a(1 − ǫb) = (1 − ǫb)a = 1, that is, a = (1 − ǫb)−1.

(b) Suppose for the sake of contradiction that b is invertible. Then the open
mapping theorem applies to b, so if U ⊂ H is the unit ball, then b(U)
contains the ball around 0 of radius ε for some ε > 0. By the definition
of a compact operator, the closure V of b(U) is a compact subset of H.
But H is infinite dimensional, so there is an infinite orthonormal set v1,
v2, . . . , and the sequence εv1, εv2, . . . is contained in V but has no limit
point, a contradiction. Hence b cannot be invertible.

5. Let X ⊂ Pn be a projective variety.

(a) Define the Hilbert function hX(m) and the Hilbert polynomial pX(m) of
X.

(b) What is the significance of the degree of pX? Of the coefficient of its
leading term?

(c) For each m, give an example of a variety X ⊂ Pn such that hX(m) 6=
pX(m).

Solution.

(a) The homogeneous coordinate ring S(X) is the graded ring S(Pn)/I,
where S(Pn) is the ring of polynomials in n+1 variables and I is the ideal
generated by those homogeneous polynomials which vanish on X. Then
hX(m) is the dimension of the mth graded piece of this ring. The Hilbert
polynomial pX(m) is the unique polynomial such that pX(m) = hX(m)
for all sufficiently large integers m.

(b) The degree of pX is the dimension d of the variety X ⊂ Pn, and its
leading term is deg X/d!.

(c) Let X consist of any k distinct points of Pn. Then X is a variety of
dimension 0 and degree k, so by the previous part pX(m) = k. But
hX(m) is at most the dimension of the space of homogeneous degree m
polynomials in n + 1 variables, so for sufficiently large k, hX(m) < k =
pX(m).



6. Let X = S2 ∨RP2 be the wedge of the 2-sphere and the real projective plane.
(This is the space obtained from the disjoint union of the 2-sphere and the
real projective plane by the equivalence relation that identifies a given point
in S2 with a given point in RP2, with the quotient topology.)

(a) Find the homology groups Hn(X, Z) for all n.

(b) Describe the universal covering space of X.

(c) Find the fundamental group π1(X).

Solution.

(a) The wedge A ∨ B of two spaces satisfies H̃n(A ∨ B, Z) = H̃n(A, Z) ⊕
H̃n(B, Z) for all n, so

H0(X, Z) = Z, H1(X, Z) = Z/2Z, H2(X, Z) = Z.

(b) The universal covering space X̃ of X can be constructed as the union
of the unit spheres centered at (−2, 0, 0), (0, 0, 0) and (2, 0, 0) in R3; the
group Z/2Z acts freely on X̃ by sending x to −x, and the quotient is X.
Topologically, X̃ is the wedge sum S2 ∨ S2 ∨ S2.

(c) Since X is the quotient of the simply connected space X̃ by a free action
of the group Z/2Z, we have π1(X) = Z/2Z.
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1. For z ∈ C \ Z, set

f(z) = lim
N→∞

(

N
∑

n=−N

1

z + n

)

(a) Show that this limit exists, and that the function f defined in this way
is meromorphic.

(b) Show that f(z) = π cot πz.

Solution.

(a) We can rewrite f as

f(z) =
1

z
+ lim

N→∞

(

N
∑

n=1

1

z + n
+

1

z − n

)

=
1

z
+

∞
∑

n=1

2z

z2 − n2
.

For any z ∈ C \ R, the terms of this sum are uniformly bounded near
z by a convergent series. So this sum of analytic functions converges
uniformly near z and thus f is analytic near z. We can apply a similar
argument to f(z) − 1

z−n to conclude that f has a simple pole at each
integer n (with residue 1).

(b) The meromorphic function π cot πz also has a simple pole at each integer
n with residue limz→n(z −n)(π cot πz) = 1, so f(z)−π cot πz is a global
analytic function. Moreover

f(z + 1) − f(z) = lim
N→∞

(

N
∑

n=−N

1

z + 1 + n
− 1

z + n

)

= lim
N→∞

(

1

z + 1 + N
− 1

z − N

)

= 0

for all z ∈ C \Z, and cotπ(z + 1) = cotπz, so f(z)− π cot πz is periodic
with period 1. Its derivative is

f ′(z) − d

dz
π cot πz = − 1

z2
+

∞
∑

n=1

(

− 1

(z + n)2
− 1

(z − n)2

)

+ π2 sin2 πz.

This is again an analytic function with period 1, and it approaches 0
as the imaginary part of z goes to ∞, so it must be identically 0. So



f(z) − π cot πz is constant; since it is an odd function, that constant
must be 0.

2. Let p be an odd prime.

(a) What is the order of GL2(Fp)?

(b) Classify the finite groups of order p2.

(c) Classify the finite groups G of order p3 such that every element has order
p.

Solution.

(a) To choose an invertible 2 × 2 matrix over Fp, we first choose its first
column to be any nonzero vector in p2 − 1, then its second column to
be any vector not a multiple of the first in p2 − p ways. So GL2(Fp) has
(p2 − 1)(p2 − p) elements.

(b) Let G be a group with p2 elements. As a p-group, G must have nontrivial
center Z. If Z = G, then G is abelian and so G = (Z/pZ)2 or G = Z/p2Z.
Otherwise Z has order p. So there is a short exact sequence

1 → Z → G → Z/pZ → 1.

The sequence splits, because we can pick a generator for Z/pZ and choose
a preimage for it in G; this preimage has order p (G cannot contain an
element of order p2 or it would be cyclic) so it determines a splitting
Z/pZ → G. Hence G is the direct product of Z and Z/pZ (because Z is
central in G). So there are no new groups in this case.

(c) Let G be a group with p3 elements in which every element has order
p, and let Z be the center of G; again Z is nontrivial. If Z has order
p3, then G is abelian, and since every element has order p, G must be
(Z/pZ)3. If Z has order p2, then Z must be isomorphic to (Z/pZ)2, and
there is a short exact sequence

1 → Z → G → Z/pZ → 1.

Again, we can split this sequence by choosing a preimage of a generator
of Z/pZ, so G is the direct product Z ×Z/pZ. Hence Z is not really the
center of G, and there are no groups in this case. Finally, suppose Z has
order p; then there is a short exact sequence

1 → Z → G → (Z/pZ)2 → 1.

Let a and b be elements of G whose images together generate (Z/pZ)2.
Then the image of c = bab−1a−1 is 0 ∈ (Z/pZ)2, so c lies in Z. If a
and b commuted, we could split this sequence which would lead to a



contradiction as before. Hence c is a generator of Z. We can write every
element of G uniquely in the form aibjck with 0 ≤ i, j, k < p, and we
know the commutation relations between a, b and c; it’s easy to see that
G is isomorphic to the group of upper-triangular 3 × 3 matrices over Fp

with ones on the diagonal via the isomorphism

aibjck ↔





1 j k
0 1 i
0 0 1



 .

It remains to check that in this group every element really has order p.
But one can check by induction that





1 j k
0 1 i
0 0 1





n

=





1 nj nk + n(n−1)
2 ij

0 1 ni
0 0 1





and setting n = p, the right hand side is the identity because p is odd.

3. Let X and Y be compact, connected, oriented 3-manifolds, with

π1(X) = (Z/3Z) ⊕ Z ⊕ Z and π1(Y ) = (Z/6Z) ⊕ Z ⊕ Z ⊕ Z.

(a) Find Hn(X, Z) and Hn(Y, Z) for all n.

(b) Find Hn(X × Y, Q) for all n.

Solution.

(a) (We omit the coefficient group Z from the notation in this part.) By the
Hurewicz theorem, H1(X) is the abelianization of π1(X), so H1(X) =
(Z/3Z) ⊕ Z ⊕ Z. By Poincaré duality, H2(X) = (Z/3Z) ⊕ Z ⊕ Z as
well. Now by the universal coefficient theorem for cohomology, H1(X) is
(noncanonically isomorphic to) the free part of H1(X). So H1(X) = Z⊕
Z, and by Poincaré duality again H2(X) = Z⊕Z too. Of course, H3(X) =
Z because X is a connected oriented 3-manifold. So the homology groups
of X are

H0(X) = Z, H1(X) = (Z/3Z) ⊕ Z2, H2(X) = Z2, H3(X) = Z.

Entirely analogous arguments for Y yield

H0(Y ) = Z, H1(Y ) = (Z/6Z) ⊕ Z3, H2(Y ) = Z3, H3(Y ) = Z.

(b) The module Q is flat over Z (TorZ

n(Q,−) = 0 for n > 0) so for any space
A, Hn(A, Q) = Q ⊗ Hn(A, Z). In particular,

H0(X, Q) = Q, H1(X, Q) = Q2, H2(X, Q) = Q2, H3(X, Q) = Q,



H0(Y, Q) = Q, H1(Y, Q) = Q3, H2(Y, Q) = Q3, H3(Y, Q) = Q.

The Künneth theorem over a field k states that H∗(A×B, k) = H∗(A, k)⊗
H∗(B, k) for any spaces A and B. So the homology groups Hn(X×Y, Q)
for n = 0, . . . , 6 are

Q, Q5, Q11, Q14, Q11, Q5, Q.

Note. Actually, there are no compact connected 3-manifolds M with π1(M) =
(Z/3Z)⊕Z⊕Z or π1(M) = (Z/6Z)⊕Z⊕Z⊕Z. The only abelian groups which
are the fundamental groups of compact connected 3-manifolds are Z/nZ, Z,
Z ⊕ Z ⊕ Z, and (Z/2Z) ⊕ Z.

4. Let C∞
c (R) be the space of differentiable functions on R with compact support,

and let L1(R) be the completion of C∞
c (R) with respect to the L1 norm. Let

f ∈ L1(R). Prove that

lim
h→0

1

h

∫

|y−x|<h
|f(y) − f(x)|dy = 0

for almost every x.

Solution. Let Xk be the set of x ∈ R such that

lim sup
h→0

1

h

∫

|y−x|<h
|f(y) − f(x)| dy >

1

k
.

We will show that Xk has measure 0 for each k = 1, 2, . . . . The union of these
sets is the set of x for which the displayed equation in the problem statement
does not hold; if it is the union of countably many sets of measure 0, it also
has measure 0, proving the desired statement.

Fix a positive integer k, and let ε > 0. By the given definition of L1(R),
there is a differentiable function g on R with compact support such that
||f − g||1 ≤ ε/4k. Write f1 = f − g. I claim that

lim sup
h→0

1

h

∫

|y−x|<h
|f(y) − f(x)| dy = lim sup

h→0

1

h

∫

|y−x|<h
|f1(y) − f1(x)| dy,

so we may replace f by f1. Indeed, by the triangle inequality, the difference
between the two sides is at most

lim sup
h→0

1

h

∫

|y−x|<h
|g(y) − g(x)| dy.

Since g is continuous, we may choose h small enough so that the integrand is
bounded by δ for any δ > 0, hence this lim sup is 0.



So now suppose f ∈ L1(R) is such that ||f ||1 < ǫ/4k. Observe that

lim sup
h→0

1

h

∫

|y−x|<h
|f(y) − f(x)| dy ≤ lim sup

h→0

1

h

∫

|y−x|<h
|f(x)| + |f(y)| dy

= 2 |f(x)| + lim sup
h→0

1

h

∫

|y−x|<h
|f(y)| dy.

Now define F (x) =
∫ x
−∞ |f(y)| dy. Then by the Lebesgue differentiation theo-

rem F is differentiable with F ′(x) = |f(x)| for almost every x. The last term
on the second line above equals 2F ′(x) wherever the latter is defined, so for
almost every x,

lim sup
h→0

1

h

∫

|y−x|<h
|f(y) − f(x)| dy ≤ 4 |f(x)|.

The measure of the set of points x such that 4 |f(x)| ≥ 1/k is at most
4k ||f ||1 < ε, so the measure of Xk is at most ε. Since ε was arbitrary,
Xk has measure 0 as claimed.

5. Let P5 be the projective space of homogeneous quadratic polynomials F (X, Y, Z)
over C, and let Φ ⊂ P5 be the set of those polynomials that are products of
linear factors. Similarly, let P9 be the projective space of homogeneous cubic
polynomials F (X, Y, Z), and let Ψ ⊂ P9 be the set of those polynomials that
are products of linear factors.

(a) Show that Φ ⊂ P5 and Ψ ⊂ P9 are closed subvarieties.

(b) Find the dimensions of Φ and Ψ.

(c) Find the degrees of Φ and Ψ.

Solution.

(a) Identify P2 with the projective space of linear polynomials F (X, Y, Z)
over C. Then there is a map P2 × P2 → P5 given by multiplying the
two linear polynomials to get a homogeneous quadratic polynomial. Its
image is exactly Φ. Since P2 × P2 is a projective variety, Φ is a closed
subvariety of P5. Similarly, there is a map P2 ×P2 ×P2 → P9 with image
Ψ, showing that Ψ is a closed subvariety of P9.

(b) The fibers of the maps P2 × P2 → Φ and P2 × P2 × P2 → Ψ are all
0-dimensional by unique factorization, so dim Φ = 4 and dim Ψ = 6.

(c) We will show that the degree of Ψ is 15. The degree of Φ can be shown
to be 3 by a similar argument, or by noting that Φ ⊂ P5 is defined by
the vanishing of the determinant.

The dimension of Ψ is 6, so we could compute the degree of Ψ by in-
tersecting Ψ with 6 generic hyperplanes in P9. Instead, we will choose 6



hyperplanes which are not generic. Each f ∈ Ψ has a zero locus which
is the union of three lines in P2. If x is a point of P2, the set of g ∈ P9

for which g(x) = 0 is a hyperplane. Pick 6 generic points x1, . . . , x6 of
P2, and consider those f ∈ Ψ whose zero loci pass through all of these
points. Such an f has a zero locus consisting of three lines whose union
contains x1, . . . , x6; there is exactly one way to choose those lines for
each partition of {x1, . . . , x6} into three parts of size two. We can easily
count that there are 15 such partitions. So Ψ meets this intersection of
6 hyperplanes set-theoretically in 15 points. Without verifying that the
intersection is transverse, we can only conclude that the degree of Ψ is
at least 15.

We next use the Hilbert polynomial to show that the degree of Ψ is at
most 15. Let Vl be the vector space of degree-l homogeneous polyno-
mials on Ψ, and Wl the vector space of degree-(l, l, l) tri-homogeneous
polyonimals on P2 × P2 × P2 which are invariant under the action of S3

given by permuting the three P2 factors. Name the multiplication map
P2×P2×P2 → P9 from part (a) m. Pullback along m gives a map m∗ from
Vl to Wl, because m◦σ = m for any σ ∈ S3 acting on P2×P2×P2. More-
over m∗ is injective, since m is surjective. Therefore dimVl ≤ dim Wl.
The dimension of Wl is the number of monomials of tridegree (l, l, l) up
to symmetry, or equivalently the number of 3 × 3 matrices of nonnega-
tive integers with columns summing to l up to permutation of columns.

There are
(

l+2
2

)

possible columns and thus
((l+2

2 )+2
3

)

= l6

23·6 + O(l3) such

matrices. So dim Vl ≤ l6

23·6 + O(l3) and it follows that the degree of Ψ is

at most 6!
23·6 = 15. Together with the previous bound, this shows that

deg Ψ = 15.

(Note: m∗ is not always surjective. The dimension of Vl is at most
the dimension of the space of degree-l homogeneous polynomials on P9,
namely

(

9+l
l

)

. When l = 2 this is only
(

11
2

)

= 55, while dimWl =
((4

2)+2
3

)

=
(

8
3

)

= 56. Thus, additional care would be needed to show that
deg Ψ = 15 using only the Hilbert polynomial.)

6. Realize S1 as the quotient S1 = R/2πZ, and consider the following two line
bundles over S1:

L is the subbundle of S1 × R2 given by

L = {(θ, (x, y)) : cos(θ) · x + sin(θ) · y = 0}; and

M is the subbundle of S1 × R2 given by

M = {(θ, (x, y)) : cos(θ/2) · x + sin(θ/2) · y = 0}.

(You should verify for yourself that M is well-defined.) Which of the following
are trivial as vector bundles on S1?



(a) L

(b) M

(c) L ⊕ M

(d) M ⊕ M

(e) M ⊗ M

Solution.

(a) Since L is a line bundle, to show that L is trivial, it suffices to give a
section of L which is everywhere nonzero. Take s(θ) = (− sin(θ), cos(θ)).

(b) Let B ⊂ M be the subbundle of vectors of unit length (so B is an
S0 bundle over S1). Consider the map γ : S1 = R/2πZ → B defined
by γ(θ) = (2θ, (− sin(θ), cos(θ))). Then γ is a homeomorphism, so in
particular, B is not homeomorphic to S0×S1, and M cannot be a trivial
line bundle.

(c) Let C ⊂ L⊕M be the subbundle of vectors of unit length (so C is an S1

bundle over S1). We will write v ⊕w for a vector in L⊕M over x ∈ S1,
where v and w are vectors in L and M over x respectively. Consider the
map h : S1 × [0, 2π] → C given by

h(φ, θ) = (θ, (cos φ(− sin θ, cos θ) ⊕ sin φ(− sin(θ/2), cos(θ/2)))).

This is a homotopy between the maps S1 → C given by

h(φ, 0) = (0, ((0, cos φ) ⊕ (0, sinφ)))

and
h(φ, 2π) = (0, ((0, cos φ) ⊕ (0,− sin φ))).

If L ⊕ M → S1 were a trivial plane bundle, then C would be the torus
and these two paths would not be homotopic. Hence L ⊕ M is not a
trivial plane bundle over S1.

(d) Define s : [0, 2π] → M ⊕ M by

s(θ) = (θ, (cos(θ/2)(− sin(θ/2), cos(θ/2))⊕sin(θ/2)(− sin(θ/2), cos(θ/2)))).

Observe that s is nowhere 0 and s(0) = (0, ((0, 1) ⊕ (0, 0))) is equal to
s(2π) = (0, (−(0,−1) ⊕ (0, 0))). So s factors through S1, and thus is a
global nonvanishing section of M ⊕ M . We can get a second, linearly
independent section of M⊕M by applying the map A : M⊕M → M⊕M ,

A(θ, (v ⊕ w)) = (θ, ((−w) ⊕ v))

to s. So s and A ◦ s form a basis for M ⊕M at every point, and M ⊕M
is a trivial plane bundle over S1.



(e) Consider the map s : [0, 2π] → M given by

s(θ) = (θ, (− sin(θ/2), cos(θ/2))).

Since s(0) = (0, (0, 1)) while s(2π) = (0, (0,−1)), s does not factor
through S1. However, if we define s′ : [0, 2π] → M ⊗ M by

s′(θ) = (θ, v ⊗ v) where (θ, v) = s(θ),

then s′(0) = (0, (0, 1)⊗ (0, 1)) = (0, (0,−1)⊗ (0,−1)) = s′(2π). So s′ is a
global nonvanishing section of the line bundle M ⊗M , and thus M ⊗M
is trivial.

Note: Parts (c)–(e) can be solved more systematically using the theory of
vector bundles. For X a pointed compact space, an n-dimensional vector
bundle on the suspension of X is determined up to isomorphism by a homotopy
class of pointed maps from X to the orthogonal group O(n). For a map
f : X → O(n), the corresponding vector bundle is obtained by taking trivial
bundles on two copies of the cone on X and identifying them at a point x ∈ X
via the map f(x). In our case X = S0 and so a homotopy class of pointed
maps from X to O(n) is just a connected component of O(n). The bundles
L and M correspond to the connected components of the matrices (1) and
(−1) respectively. It follows that the bundles L ⊕ M , M ⊕ M , and M ⊗ M
correspond to

(

1 0
0 −1

)

,

(

−1 0
0 −1

)

, and
(

1
)

,

respectively, so L ⊕ M is nontrivial but M ⊕ M and M ⊗ M are trivial.


